
ZØ: An Optimizing Distributing Zero-Knowledge Compiler

Matthew Fredrikson
University of Wisconsin

Benjamin Livshits
Microsoft Research

MSR-TR-2013-43

Abstract

Applications increasingly rely on privacy-sensitive
user data, but storing user’s data in the cloud cre-
ates challenges for the application provider, as con-
cerns arise relating to the possibility of data leaks, re-
sponding to regulatory pressure, and initiatives such
as DoNotTrack. However, storing data in the cloud
is not the only option: a recent trend explored in sev-
eral recent research projects has been to move func-
tionality to the client. Because execution happens
on the client, such as a mobile device or even in the
browser, this alone provides a degree of privacy in the
computation, with only relevant data disclosed to the
server. However, in many cases moving functionality
to the client conflicts with a need for computational
integrity : a malicious client can simply forge the re-
sults of a computation.

Traditionally, confidentiality and integrity have
been two desirable design goals that are have been
difficult to combine. Zero-Knowledge Proofs of
Knowledge (ZKPK) offer a rigorous set of crypto-
graphic mechanisms to balance these concerns. How-
ever, published uses of ZKPK have been difficult for
regular developers to integrate into their code and,
on top of that, have not been demonstrated to scale
as required by most realistic applications.

This paper presents ZØ (pronounced “zee-not”),
a compiler that consumes applications written in
C# into code that automatically produces scalable
zero-knowledge proofs of knowledge, while automati-
cally splitting them into distributed code. ZØ builds
detailed cost models and uses two existing zero-
knowledge back-ends with varying performance char-
acteristics to select the most efficient translation. Us-

ing a set of realistic applications that perform tasks
such as distributed data mining and crowd-sourced
aggregation, we demonstrate ZØ’s ability to produce
code that executes significantly faster than was previ-
ously possible. Our case studies have been directly in-
spired by existing sophisticated widely-deployed com-
mercial products that require both privacy and in-
tegrity. The performance delivered by ZØ is as much
as 58× faster (about 15× on average) than either of
the underlying techniques used in the back-ends can
deliver, showing that applications in need of ZKPK
which were previously hopelessly slow are now within
reach for practical deployment.

1 Introduction

As popular applications rely on personal, privacy-
sensitive information about users, factors such as le-
gal regulations, industry self-regulation, and a grow-
ing body of privacy-conscious users all pressure de-
velopers to respond to demands for privacy. Storing
user’s data in the cloud creates downsides for the ap-
plication provider, both immediately and down the
road. While policy measures such as DoNotTrack
and anonymous advertising identifier become increas-
ingly popular, a recent trend explored in several re-
search projects has been to move functionality to the
client [15, 20, 41, 44]. Because execution happens
on the client, such as a mobile device or even in the
browser, this alone provides a degree of privacy in
the computation: only relevant data, if any, is dis-
closed (to a server). However, in many cases, moving
functionality to the client conflicts with a need for
computational integrity : a malicious client can sim-

1

1 INTRODUCTION

ply forge the results of a computation.

Traditionally, confidentiality and integrity have
been two desirable design goals that are have been
difficult to combine. Zero-Knowledge Proofs of
Knowledge (ZKPK) offer a rigorous set of crypto-
graphic mechanisms to balance these concerns, and
recent theoretical developments suggest that they
might translate well into practice. In the last several
years, zero-knowledge approaches have received a fair
bit of attention [27]. The premise of zero-knowledge
computation is its promise of both privacy and in-
tegrity through the mechanism cryptographic proofs.
However, published uses of ZKPK [4, 6, 8, 9, 22, 40]
have been difficult for regular developers to integrate
into their code and, on top of that, have not been
demonstrated to scale, as required by most realistic
applications.

Zero-knowledge example: pay as you drive in-
surance: A frequently mentioned application and
a good example of where zero-knowledge techniques
excel is the practice of mileage metering to bill for
car insurance: pay as you drive auto insurance is
an emerging scheme that involves paying a rate pro-
portional to the number of miles driven, either lin-
early, or using several billing brackets (MileMeter.
com) [5, 42, 45]. Of course, given that the insurance
company knows much about the customer, includ-
ing their address, if daily mileage data is provided,
much can be inferred about user’s daily activities,
where they shop, etc. [18, 34, 35]. The user in this
scheme performs a calculation on their own data, but
of course the insurance company wants to prevent
cheating. Zero-knowledge proofs provide a way to
ensure both privacy and integrity, which involves per-
forming the billing computation on the user’s hard-
ware (on the client), perhaps, monthly, and providing
the insurance company with 1) the final bill and 2)
a proof of correctness of the accounting calculation,
which can be verified by the insurance company (on
the server) [4, 21, 39, 43].

What we did: In this paper, we present ZØ, a com-
piler that consumes applications written in a subset
of C# into code that automatically produces scal-
able zero-knowledge proofs of knowledge, while au-
tomatically splitting them into distributed code, to

be executed on two (or more) execution tiers. We
are building on very recent developments in zero-
knowledge cryptographic techniques [19, 36], expos-
ing to the developer the ability to take advantage of
these advances. ZØ builds detailed cost models of the
code regions that require ZKPK, and uses two exist-
ing leading-edge zero-knowledge back-ends with vary-
ing performance characteristics to select the most ef-
ficient translation, by formulating and solving con-
strained numeric optimization problems. Our cost
modeling takes advantage of the strengths of both
back-ends, while avoiding their weaknesses, both for
local and global (distributed) optimization. Using a
set of realistic applications that perform tasks such as
distributed data mining and crowd-sourced aggrega-
tion, we demonstrate ZØ’s ability to produce privacy-
preserving code which runs significantly faster than
previously possible.

High-level goals: ZØ aims to provide an attrac-
tive combination of high-level goals of privacy, in-
tegrity, expressiveness, and performance. While the
first two goals are achieved through the use of zero-
knowledge, to support ease of programming and ex-
pressiveness, ZØ accepts (a subset of) C#, a widely-
used general purpose language as input that can
run in many settings. Of course, we are not tied
to C# and could support another high-level lan-
guage such as JavaScript, Java, or C++. Our use of
a general-purpose language allows developers to in-
clude hundreds or thousands of lines of C# or other
.NET code, allowing the construction of full-featured
GUI-based distributed applications. To enable dis-
tributed programming wherever .NET code can run,
ZØ supports automatic tier-splitting, inspired by dis-
tributing compilers such as GWT [24] and Volta [29].
We primarily target client-server computations (two
tiers), although other options such as P2P are also
supported by ZØ. Code produced by ZØ can be run
on desktops, in the cloud, on mobile devices (Win-
dows Phone) and on the web (Silverlight).

Applications: Much of the inspiration for ZØ came
from our desire to be able to use ZKPK techniques to
build applications directly analogous to some widely-
deployed commercial products, as opposed to toy
benchmarks. In our studies detailed in Section 6,

MSR-TR-2013-43 2 May 23, 2013

2 BACKGROUND

we show how they can be (re-)built in a privacy-
and integrity-preserving way. For example, our Fit-
Bit study was inspired by wireless activity tracking
devices manufactured by FitBit (fitbit.com) and
Earndit (earndit.com). The Slice study was in-
spired by purchase tracking software from Slice, Inc.
(slice.com). The study Waze app was inspired by
Waze, a popular mobile crowd-sourced traffic and
real-time traffic and directions software (waze.com).

Contributions: To sum up, this paper makes these
contributions:

• This paper proposes ZØ, a distributing compiler
that allows developers to create highly perfor-
mant, large distributed applications, while preserv-
ing both privacy and integrity.

• ZØ uses precisely calibrated cost models to choose
which underlying zero-knowledge back-end to em-
ploy. Based on the cost model, ZØ statically de-
termines the appropriate splitting perimeter for
the application to achieve best performance and
rewrites it to be run on multiple tiers.

• ZØ is designed to be easily accessible to a reg-
ular developer; to this end, we expose zero-
knowledge functionality via LINQ, language-
integrated-queries. We demonstrate the expres-
siveness of the ZØ approach by developing 6 case
studies directly inspired by commercial applica-
tions, ranging from personal fitness tracking (Fit-
bit) to crowd-sourced traffic-based routing (Waze),
to personalized shopping scenarios.

• Using a combination of cryptographic primitives
on a set of applications mimicking functionality
from existing mobile and web applications, we
demonstrate the viability of ZØ: it produces code
that can scale to large data inputs and thousands
of users in a distributed setting. We evaluate
ZØ, focusing on latency and throughput of zero-
knowledge tasks. Our cost-fitting models provide
an excellent match with the observed performance,
with R2 scores between .97 and .99. Our global
optimizer is fast, completing in under 3 seconds
on all programs. ZØ produces code that archives
as much as 58× speedups compared to state-of-the
art zero-knowledge systems. We also find that ZØ

is able to effectively optimize across tiers in a dis-
tributed application: while the code it generates
may be slower on one tier (we observed one case
that was 4× slower for the server), the savings at
other tiers is always much greater (the same case
was 16× faster on the clients).

Paper Organization: The rest of the paper is orga-
nized as follows. Section 2 provides motivating exam-
ples and some background on zero-knowledge. Sec-
tion 3 gives an overview of the ZØ approach. Sec-
tion 5 describes the ZØ compiler implementation.
Section 4 talks about both local and global optimiza-
tions ZØ performs. Section 7 describes our experi-
mental evaluation. Related work is discussed in Sec-
tion 8. Finally, Section 9 concludes.

2 Background

To explain the goals of ZØ concretely, we will demon-
strate its functionality on a smartphone application
with conflicting privacy and integrity needs.

2.1 Example: Retail Loyalty Card

Figure 1 shows the ZØ code for a personalized retail
loyalty card mobile app, with functionality similar
to Safeway’s “Just for U” application or Walgreens’
iOS application(Figure 3). Figure 2 shows the end-
to-end architecture of this application. Each time the
customer reaches the check-out line, this application
interacts with the retail terminal in a bi-directional
exchange of information. The exchange takes place
using the phone’s built-in NFC sensor.

First, the application sends a discount claim to
the retail terminal, pertaining to the items the cus-
tomer is about to purchase. This discount is com-
puted based on the customer’s previous purchases,
using personalization to provide enhanced value and
incentive for the customer. Zero-knowledge proofs
are supplied to ensure the privacy of the customer’s
shopping history, without sacrificing the trustworthi-
ness of their discount claim.

Second, the terminal sends a list of purchases to the
client, corresponding to the current check-out trans-
action. This list, along with the customer’s other

MSR-TR-2013-43 3 May 23, 2013

2 BACKGROUND 2.1 Example: Retail Loyalty Card

1 public class LoyaltyCard : DistributedRuntime
2 {
3 // Local variable declarations
4 [Location(Client)] IEnumerable <int > shophist;
5 [Location(Client)] IEnumerable <int > items;
6 IEnumerable <Triple > automata;
7 IEnumerable <Pair > transducer;
8

9 public void Initialize(string [] args)
10 {...}
11

12 public void DoWork(string [] args)
13 {
14 var discount =
15 GetDiscounts(shophist , items ,
16 automata , transducer);
17 ApplyDiscount(discount);
18 }
19

20 [Location(Client)]
21 IEnumerable <Pair > GetDiscounts(
22 [MaxSize(Purchases)] IEnumerable <int > history ,
23 [MaxSize(Items)] IEnumerable <int > items ,
24 [MaxSize(Edges)] IEnumerable <Triple > automata ,
25 [MaxSize(States)] IEnumerable <Pair > transducer)
26 {
27 ZeroKnowledgeBegin ();
28 // Check that the history is in ascending order
29 var historyAscendingCheck = history.Aggregate(
30 0,
31 (last , curel) => check(last <= curel));
32 // Get the "discount state"
33 var purch_state = history.Aggregate(
34 0,
35 (state , purch) =>
36 automata.First(
37 trans => (trans.fld(1) == state) &&
38 (trans.fld (2) == purch)).
39 fld (3));
40 var discount = history.Aggregate(
41 new Pair(purch_state , 0),
42 (state , purch) =>
43 new Pair(
44 // Get the next automata state
45 automata.First(
46 trans => (trans.fld(1) == state.fld (1))
47 && (trans.fld(2) == purch)).
48 fld(3),
49 // Total the current state discount
50 state.fld(2) + transducer.First(
51 edge => edge.fld (1) == state.fld (1)));
52 ZeroKnowledgeEnd ();
53

54 return new IEnumerable <Pair >(discount);
55 }
56

57 [Location(External)] void ApplyDiscount (...)
58 {...}
59 }

Figure 1: Running example application: a personalized retail
loyalty card.

❶

❷ signed purchase transaction

discount claim + ZKPK

transcations

100

Figure 2: Personalized loyalty card application.

previous purchases, will be stored in a client-side
database used to compute a discount the next time
the user shops with this retailer.

Application Code: Figure 1 contains C# code
for computing the core functionality of this applica-
tion: using the customer’s purchase history to pro-
duce a discount, and sending that discount to the
retail terminal. It is important to notice that this
is standard C#, capable of seamless incorporation
into larger bodies of C# code. In fact, ZØ extends
on the standard C# compiler, and only applies spe-
cialized reasoning to classes that inherit from ZØ’s
DistributedRuntime class. All of the UI and external
library code can remain in the application, without
affecting the performance and functionality of ZØ.
This allows ZØ to scale to large applications with
arbitrary legacy dependencies, provided that the sec-
tions requiring zero-knowledge reasoning are local-
ized and moderate in size. Several important points
bear mentioning.

First, of the four functions, two of them, which we
call worker functions, contain location annotations:
GetDiscounts is constrained to execute on the client
(e.g., the user’s smartphone), and ApplyDiscount to
External (e.g., the retail terminal). ZØ generates sep-
arate object code for each of these locations, and in-
serts code to handle the network transfer and data
marshalling for any dependencies between these two
functions. In order to streamline the code gener-
ated by ZØ, the worker functions must always return
IEnumerable objects, which ZØ’s underlying runtime
is optimized to quickly marshall and transfer.

Second, the target functionality is computed from
the main function DoWork, which is called after
Initialize. Initialize gives the application an op-

MSR-TR-2013-43 4 May 23, 2013

2 BACKGROUND 2.1 Example: Retail Loyalty Card

Figure 3: Real-world example of the personalized loyalty card
application: Walgreens’ iOS application.

portunity to prepare the class’s local state by reading
sensors, buffering data, etc., and can contain arbi-
trary C# code. DoWork is more constrained: it can
contain a sequence of calls to worker functions, with
no intermediate local computations, branching state-
ments, or loop statements. This allows ZØ to effi-
ciently compute the dependencies between different
tiers. In this case, ZØ determines that the return
value of GetDiscounts (computed on the smartphone)
is always used by ApplyDiscount (computed on the re-
tail terminal), and inserts code to package and send,
or receive and unpack, the necessary data as well as
any accompanying zero-knowledge proofs.

Third, the main code is located in GetDiscounts,
which takes a list of the user’s previous pur-
chases (history), the user’s current check-out items
(items), and a finite-state transducer (automata and
transducer), and produces a discount dollar value
for transfer to the retail terminal. The transducer
is produced by the retailer, and is designed to as-
sociate past purchases to items that the customer
may be interested in buying in the future; the details
of designing the transducer are beyond the scope of
this work. GetDiscounts begins by checking that the
purchases are given in ascending order, by their ID
numbers; this is a simple optimization that allows
the retailer to minimize the size of the transducer.
This check is performed by performed using LINQ’s
Aggregate operator, and ZØ’s check function, which
behaves like an assertion. It then proceeds to tra-
verse the transducer’s finite-state machine using the
customer’s shopping history, effectively loading the
history into the transducer’s memory in preparation
for emitting discount values.

Finally, the customer’s current items are processed
by traversing the finite-state machine, starting in the
final state of the previous traversal, and summing the
output of the transducer relation. The final sum is
returned to DoWork as a discount claim.

Zero-knowledge: The entirety of GetDiscounts is
computed in zero-knowledge, as indicated by the
ZeroKnoweldgeBegin() and ZeroKnowledgeEnd() anno-
tations. Notice that each statement of this method
consists of a LINQ query, giving the computation
an overall functional form, without using language
features such as references, loops, or conditionals.
This is necessary to accommodate faithful transla-
tion into code that produces zero-knowledge proofs
using the zero-knowledge back-ends discussed in Sec-
tion 2.2. However, the programmer is still able to ex-
press zero-knowledge computations in this fragment
of standard C#, without dealing with the overhead
of inter-language binding between the engines and
the main program, and without needing to learn the
different input languages understood by each engine.

Finally, a few subtle details of this code bear
mentioning. Two of the class variable declarations,
shophist and items, have location annotations that

MSR-TR-2013-43 5 May 23, 2013

3 OVERVIEW

tell ZØ that they should not leave the customer’s
smartphone without first being processed by zero-
knowledge code. This gives the programmer an ex-
tra degree of assurance of the code’s privacy proper-
ties, letting her treat the zero-knowledge code regions
like declassifiers with additional integrity guarantees.
The code in GetDiscounts uses Pair and Triple types,
instead of the standard System.Tuple <> types sup-
ported by the .NET platform. These types are de-
fined by the programmer, and have a restricted form
that prevents issues such as side effects or arbitrary
method code that might prevent accurate translation
into zero-knowledge code. Finally, notice that the pa-
rameters to GetDiscounts contain MaxSize attribute
annotations. These optional size annotations allow
the ZØ compiler to do precise cost modeling, as ex-
plained in Section 4.

2.2 Zero-Knowledge Back-ends

ZØ relies on two zero-knowledge back-ends, Pinoc-
chio [36] and ZQL [19], to produce code that bal-
ances privacy and integrity. Each of these back-ends
takes an expression, in the form of executable code
in a high-level source language, and produces object
code that computes the expression over dynamically-
provided inputs while building zero-knowledge proofs
for the expression on the given input. These engines
have very different characteristics that affect perfor-
mance and usability in different ways, which we out-
line here.

Pinocchio: Pinocchio utilizes a novel underlying
computation model, Quadratic Arithmetic Polyno-
mials, to evaluate an expression and produce zero-
knowledge proofs [36]. For some computations, it
yields performance gains several orders of magnitude
beyond previous systems that gave similar function-
ality, producing proofs of a constant size regardless
of the size or structure of the target expression.

The expression language supported by Pinocchio is
a strict subset of C, and the object created for evalu-
ation is an arithmetic circuit [36]. An arithmetic cir-
cuit is structured identically to a traditional Boolean
circuit, but the gates correspond to addition and mul-
tiplication, and the wires carry values from a field.
The fact that the target circuit must be finite, and

cannot encode side-effects, imposes necessary condi-
tions on the parts of C that are available. Loops
and conditionals are “unrolled” during compilation,
so all loops must have static bounds. Likewise, point-
ers and array indices must be compile-time constants,
or simple loop variables (as these are unrolled), thus
simplifying cost modeling. Structured data types and
function definitions are supported, but the only scalar
type allowed is int.

ZQL: ZQL utilizes several fairly recent advances in
the theory of zero-knowledge proofs to produce ef-
ficient verified private code that operates over func-
tional lists [19]. The underlying cryptographic ma-
chinery used by ZQL is more traditional than that of
Pinocchio, relying heavily on homomorphic commit-
ment schemes to provide its guarantees. Additionally,
the compiler produces code that can be verified using
an advanced type checker such as F7 or F?.

The expression language supported by ZQL is a
simple functional language without side effects, and
limited operator support. In a nutshell, ZQL sup-
ports map and fold operations, as well as find oper-
ations over tuples of integers. Boolean expressions
can only be used inside of find operations, and are
currently limited to conjunctions of equality tests;
all forms of inequality are not explicitly supported,
although the authors plan to support these opera-
tions in future versions. In terms of arithmetic, addi-
tion, subtraction, and multiplication are supported.
Finally, multiple operations can be sequenced using
classic functional let bindings. Although these con-
structs might seem modest at first blush, the abil-
ity to perform table lookups using find allows for
the evaluation of logic gates, and the list-based map
and fold operations place no upper-bound on the size
of the program’s input, as in the case of Pinocchio.
Thus, ZQL offers a powerful language for moderately
complex operations over large data.

3 Overview

ZØ allows developers to write code for distributed
computation environments that provides guarantees
on the privacy and integrity of their application’s
data. The privacy guarantees supported by ZØ spec-

MSR-TR-2013-43 6 May 23, 2013

3 OVERVIEW

60*expOp + 1800*expOp +
2*hashOp + 30*hashOp +
900*hashOp + 30*hashOp +
30*mltEOp + 900*mltEOp +
2*sigSignOp

900*eqOp + expOp + 60*expOp +
6300*expOp + extendOp +
60*extendOp + 4500*extendOp +
60*extendOp + 30*mltEOp +
60*mltOp + 60*subOp +
2700*invEOp + 3600*mltEOp +
5400*mltOp + 900*sIntNumOp +
3600*subOp + 6*sIntNumOp

eqOp + 3*expOp + 90*expOp +
9900*expOp + extendOp +
30*extendOp + 2700*extendOp
+ 2*hashOp + 30*hashOp +
900*hashOp + 30*hashOp +
60*mltEOp + 3600*invEOp +
6300*mltEOp + 900*mltOp +
1800*sIntNumOp + 900*subOp +
mltEOp + 3*mltOp +
6*sIntNumOp + 2*sigVerifyOp +
3*subOp

60*expOp + 1800*expOp +
2*hashOp + 30*hashOp +
900*hashOp + 30*hashOp +
30*mltEOp + 900*mltEOp +
2*sigSignOp

900*eqOp + expOp + 60*expOp +
6300*expOp + extendOp +
60*extendOp + 4500*extendOp +
60*extendOp + 30*mltEOp +
60*mltOp + 60*subOp +
2700*invEOp + 3600*mltEOp +
5400*mltOp + 900*sIntNumOp +
3600*subOp + 6*sIntNumOp

eqOp + 3*expOp + 90*expOp +
9900*expOp + extendOp +
30*extendOp + 2700*extendOp
+ 2*hashOp + 30*hashOp +
900*hashOp + 30*hashOp +
60*mltEOp + 3600*invEOp +
6300*mltEOp + 900*mltOp +
1800*sIntNumOp + 900*subOp +
mltEOp + 3*mltOp +
6*sIntNumOp + 2*sigVerifyOp +
3*subOp

1) Input is supplied as C# code, containing a
mix of ZK blocks are regular blocks.

2) Cost modes for ZQL and Pinoccio are used
to decide ZK runtime costs.

3) Appropriate ZK translation are generated
in .NET IL.

4) Final .NET DLLs are produced for each tier

Ti
er

 s
p

ec
if

ic
at

io
n

Ze
ro
-

kn
o
w
le
dg
e

30*expOp + 450*expOp +
2*hashOp + 15*hashOp +
225*hashOp + 15*hashOp +
15*mltEOp + 225*mltEOp +
2*sigSignOp

225*eqOp + expOp + 30*expOp +
1575*expOp + extendOp +
30*extendOp + 1125*extendOp +
30*extendOp + 15*mltEOp +
30*mltOp + 30*subOp +
675*invEOp + 900*mltEOp +
1350*mltOp + 225*sIntNumOp +
900*subOp + 6*sIntNumOp

eqOp + 3*expOp + 45*expOp +
2475*expOp + extendOp +
15*extendOp + 675*extendOp +
2*hashOp + 15*hashOp +
225*hashOp + 15*hashOp +
30*mltEOp + 900*invEOp +
1575*mltEOp + 225*mltOp +
450*sIntNumOp + 225*subOp +
mltEOp + 3*mltOp +
6*sIntNumOp + 2*sigVerifyOp +
3*subOp

(fold
(fun (acc,i) ! ((let (_1, _2)
= acc in _2),
(let (_1, _2) = acc in _1)
+ (let (_1, _2) = acc in
_2)))
(1, 1) inputNums)

(fold
(fun (acc,i) ! ((let (_1, _2)
= acc in _2),
(let (_1, _2) = acc in _1)
+ (let (_1, _2) = acc in
_2)))
(1, 1) inputNums)

Tier 1

Tier 2

Tier 1

Ze
ro

-k
n

o
w

le
d

g
e

co
d

e
 t

ra
n

sl
a

te
d

Figure 4: ZØ architecture.

ify which parties may view certain data elements
used in parts of the application, whereas the integrity
guarantees specify assurances on the types of compu-
tations and transformations performed on the data
elements. We primarily target client-server compu-
tations (two tiers), although other options such as
P2P are also possible. Localized computation [20, 15]
is the primary mechanism used to provide privacy
guarantees: any computations over private data are
constrained to be carried out only by the party to
which the data is considered private. “Outsourcing”
of computation over private data is avoided at all
costs, as there is no efficient mechanism that allows
the data inputs of such a computation to remain pri-
vate.

In order to support a broad range of functionality,
it is often necessary for a party to share the output
of a computation over private data with an external
party. For many applications, this introduces a trust
problem between the party concerned about private
data and the party that needs the results of a useful
computation over that data: without further assur-
ances, the latter party must simply trust that the for-
mer carried out her computations honestly, and that
the utility of the shared result is sufficient. ZØ ad-
dresses this problem by providing an integrity guar-
antee using zero-knowledge proofs of knowledge [6].
The zero-knowledge property of this mechanism af-
fords an opportunity to balance the need for integrity

with that of privacy, so that the former party does
not need to concern herself with the latter knowing
the content of her private data in order to trust the
result of her localized computation.

The guarantees provided by ZØ are strong in
the sense that they preclude cheating and unwanted
snooping on private data by any party taking part in
a distributed computation. However, they do not ad-
dress the higher-level concern of inferential privacy,
wherein the results of a private localized computation
leak additional, unwanted information about the pri-
vate data source. For example, ZØ might compile
a function that translates a sentence from one lan-
guage to another into a routine that provides a zero-
knowledge proof that the translation is performed
correctly for each translated sentence. While other
parties are not provided with the input sentence be-
cause the translation was performed locally by the
original party, and the zero-knowledge proof will not
reveal anything explicitly about the input sentence,
the translated sentence will undoubtedly leak a sub-
stantial amount of information about the original in-
put data. ZØ does not provide any facilities for pre-
venting or identifying these situations; this is a topic
of ongoing research [17] that is orthogonal to the work
presented in this paper.

Architecture of ZØ: Figure 4 shows the architec-
ture of the ZØ compiler. The developer provides as

MSR-TR-2013-43 7 May 23, 2013

3 OVERVIEW

input a set of C# source files, which may include ar-
bitrary regions of legacy and library code as well as
functionality targeted towards zero-knowledge proof
generation. ZØ then enters a cost modeling stage
(depicted in Figure 4), analyzing the zero-knowledge
regions, building performance models that character-
ize the cost of providing zero-knowledge proof gen-
eratiion and verification code for each available zero-
knowledge back-end. These models take the form
of polynomials over the size of the input data to the
zero-knowledge region in the original C# application.
ZØ then compares the models to determine which
zero-knowledge engine the application should use for
each C# statement in the zero-knowledge region,
and translates the C# code (depicted in the zero-
knowledge translation stage of Figure 4) into expres-
sions understood by the appropriate zero-knowledge
engine. In the final output stage (Figure 4), ZØ de-
cides how to split the application across tiers to max-
imize performance, given privacy annotations as well
as relative costs for transmitting data and computing
at each tier.

This translation yields a separate module which
is callable from the original application, either as
an arithmetic circuit (Pinocchio) or standard .NET
bytecode (ZQL). Finally, ZØ partitions the original
C# code, along with the zero-knowledge modules
compiled in the previous step, into multiple applica-
tions to run at each service tier. During partitioning,
ZØ inserts code to perform communication, synchro-
nization, data marshaling, and zero-knowledge proof
transfer in parallel to the original application code.
The resulting modules are standard .NET bytecode
that can be distributed onto proper tiers and run
without the need for additional specialized software.

Optimization & cost models: Even apparently
straightforward applications like the personalized loy-
alty card app discussed in Section 2.1 contain sub-
tle characteristics that might make zero-knowledge
proof generation expensive. It is often the case that
one zero-knowledge engine offers significantly better
performance for a particular statement, and selecting
the appropriate engine for each computation in the
zero-knowledge region means the difference between
a scalable, low-latency implementation and one that

0	 50	 100	 150	 200	 250	 300	 350	 400	 450	 500	

Process	 a	 GPS	 Reading	

Apply	 discount	

Redeem	 workout	 Z0	
Pinocchio	
ZQL	

Figure 5: Comparison of times for several applications.

requires hours or days to execute.

For the loyalty card application in Figure 1, it turns
out that the inequality comparisons are better han-
dled by Pinocchio, whereas the table lookups needed
to execute the transducer are very inexpensive when
performed by ZQL. A comparison of the times to per-
form the operation on the y-axis for several applica-
tions from Section 6 is shown in Figure 5. We can
see dramatic differences in performance between the
back-ends, with the ZØ approach out-performing ei-
ther of the two back-ends. ZØ addresses these perfor-
mance differences by building detailed performance
models for each statement in the zero-knowledge re-
gion.

In order to achieve complete and accurate results,
we exploit several key characteristics of the underly-
ing execution model of each zero-knowledge engine.
First, unbounded recursion is not allowed in either
engine, and branching behavior has no effect on which
statements are executed. This means that the loop-
ing behavior of each piece of zero-knowledge proof-
generating code is a function only of the size of the
input provided to that code. Second, Pinocchio re-
quires static (but arbitrary) upper bounds on the size
of each input.

ZØ builds a polynomial over the input sizes for each
statement in the zero-knowledge region, and uses
these static upper bounds wherever available to eval-
uate each polynomial, thus arriving at an estimated
cost for the statement in two hypothetical compila-
tion scenarios. These cost models are combined us-
ing 0-1 integer linear programming techniques, along
with placement constraints stemming from privacy
requirements, to produce a global split of the applica-
tion. We discuss our cost models further in Section 4.

MSR-TR-2013-43 8 May 23, 2013

4 COST MODELS & OPTIMIZATIONS

Distributed configuration: To support a vari-
ety of distributed scenarios, ZØ allows the developer
to place code on several different tiers, which are
specified using the following tier labels: Client (end-
user’s primary device), External (provider’s servers),
ClientShare (peer-to-peer nodes), and ClientResource

(additional hosts owned by end-user). Tiers impose
data confidentiality and integrity constraints, as ZØ
makes assumptions about the trust relationships be-
tween tiers. Data marked as private to Client is en-
trusted only to ClientResource hosts, but should be
kept confidential from External and ClientShare hosts.
An identical set of relations holds for data private
to ClientResource, with the roles of Client and Clien-

tResource swapped. Data marked private to External

is not entrusted to any other tier, and data marked
ClientShare only to Client and ClientShare.

The figure in this para-
graph shows these relationships;

C CS CR E

C

CS

CR

E

white cells indicate trust,
and gray the opposite. At
compile time, the user can
modify the configuration by
specifying weights on each
tier label indicating the relative cost of computation
at that tier, as well as the cost of communication be-
tween tiers. ZØ uses these weights during optimiza-
tion to determine the best placement of code and
data amongst the tiers. Data privacy constraints are
marked by the programmer by marking certain vari-
ables as private to a particular tier using the attribute
[Private(TL)], where TL specifies the tier to which the
data is considered private (e.g., Client, External, . . .).

Note that by design, these annotations are very
sparse and lightweight: privacy annotations are only
needed on (the few) variables that must be kept con-
fidential. Most can be declared without any annota-
tions at all.

When ZØ compiles the application and runs a
global optimization described in Section 4.5 to place
each worker method on a specific tier, privacy anno-
tations are used in part to determine on which tiers
a method may reside. These constraints are hard,
meaning that a privacy annotation that requires a less
performant compilation configuration will always be
respected; if the privacy constraints conflict with each

Key Generation
(prover)

Add × (CircuitDegree ×
(3 × CircuitSize + 7) +
4 × CircuitSize + 2) + 8 ×
AssignRandom + . . .

Computation
(prover)

CircuitDegree ×
InterpolationCoef × (Add +
Mul)× log2(CircuitDegree)+ . . .

Verification (ver-
ifier)

ExpMulB×NInputs+12×Pair+
VerifyConst

Figure 6: Static performance models for Pinocchio circuits,
truncated to fit paper dimensions (full models available in the
technical report). NInputs represents the number of input
wires, CircuitDegree the number of multiplication gates, and
CircuitSize = NInputs + CircuitDegree.

other, then compilation will not terminate early. Pri-
vacy annotations are propagated transitively using a
local dataflow analysis [1], so that a variable which
depends on a value private to a particular tier is also
private to that tier (see Section 4.5.1 for details).

Threat model: Because of its reliance on zero-
knowledge back-ends, ZØ makes all of the assump-
tions needed for security by ZQL [19] and Pinoc-
chio [36]. The result of ZØ compilation will be exe-
cuted on one or more tiers. We assume that commu-
nications between tiers are encrypted, to eliminate
man-in-the-middle possibilities, leading to both pri-
vacy and integrity violations. Both public key and
asymmetric cryptography are reasonable options, de-
pending on the availability of keys. We assume that
tiers cannot learn information by means other than
direct communication, i.e. Server cannot obtain the
list of purchases through side channels, for instance,
unless it is directly shared by Client. Our applications
that use secret sharing (Waze and Slice in Section 6)
also assume that P2P clients do not collude.

4 Cost Models & Optimiza-
tions

As outlined in Section 3, in many cases one zero-
knowledge engine will outperform the other on a par-
ticular computation by a significant factor, giving ZØ

MSR-TR-2013-43 9 May 23, 2013

4 COST MODELS & OPTIMIZATIONS 4.1 ZQL: Models from Symbolic Execution

Setup Prover Verifier

Z
Q

L

0 200 400 600 800 1000 1200 1400

0

10

20

30

40

50

0 2000 4000 6000 8000 10 000

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000

0

20

40

60

80

100

120

Keygen Compute Verifier

P
in

o
cc

h
io

0 500 1000 1500 2000

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000

0

500

1000

1500

0 500 1000 1500 2000

19

20

21

22

23

24

25

Figure 7: Regression curves and observed data points cost model fitting. Each horizontal axis corresponds to total input size,
and each vertical axis to execution time in seconds.

a key opportunity to optimize the code it produces.
ZØ optimizes zero-knowledge regions by building de-
tailed performance models that characterize the cost
of building and verifying zero-knowledge proofs in
each engine. We are able to accomplish this with
reasonable accuracy because the execution depth of
zero-knowledge regions is statically-bounded (a nec-
essary condition imposed by the underlying engines),
and the evaluation of zero-knowledge code universally
relies on a few primitive operations. This allows ZØ
to build static cost models as polynomials over the
number of primitive operations each region must ex-
ecute.

4.1 ZQL: Models from Symbolic Exe-
cution

In order to build cost models for ZQL code, we exe-
cute the F# “object code” generated by ZQL’s com-
piler symbolically, accumulating terms on a polyno-
mial or each operation listed in the F# object code.
Symbolic data is represented by polynomials that
characterize the size of the corresponding concrete
data, or structured sets of polynomials in the case

of structured data types. Symbolic integer data is
represented by a single polynomial, and symbolic
structured data is represented recursively: a sym-
bolic tuple is a tuple of polynomials (having the same
width as its concrete counterpart), whereas a sym-
bolic list is a pair, containing a polynomial repre-
senting its length and a symbolic value representing
the size of each element in the list. For example, the
transducer list from Figure 1 would be represented
by the symbolic value:

(transducer_length, (int_size, int_size))

Note that although ZQL’s integers have varying sizes
depending on their magnitude, we introduce a neces-
sary static approximation, and assume here that each
integer in the transducer list has roughly the same
size.

Each primitive operation generated by the ZQL
compiler is re-defined to accept symbolic operands,
and produce symbolic results that characterize the
size of the data computed by that operation. Ad-
ditionally, an environment accumulator is updated
to reflect the cost of executing that operation. The
environment accumulator is a symbolic integer that

MSR-TR-2013-43 10 May 23, 2013

4 COST MODELS & OPTIMIZATIONS 4.2 Pinocchio: Models from Circuits

represents the current end-to-end cost of execution at
all points during the computation. For example, the
chained hash operation is defined symbolically as:

let hash p1 p2 =

accumulate (var "hashOp")

var "lhash"

The environment accumulator is updated to re-
flect the cost of a hash operation with a call to
accumulate, and a new polynomial representing the
size of a hash digest is returned, var "lhash". The
operands are ignored, as we assume a constant cost
across all hash operations, and the size of the result
is not affected by the sizes of the inputs.

Operations that loop over list-valued operands in-
troduce slightly more complexity. The symbolic en-
gine must reflect that the operations performed on
individual list elements are executed to the size of
the list, but must also be careful to handle the pos-
sibility of nested list operations. To accomplish this,
a stack is introduced to hold the environment accu-
mulator at each level of loop nesting. When a new
loop operation is entered, a fresh accumulator (rep-
resenting the zero constant) is pushed onto the stack,
and each operation within the loop contributes to its
value. When the loop is finished executing, this ac-
cumulator is popped from the stack, multiplied by
the size of the original list operand, and the result is
added to the accumulator currently at the top of the
stack.

The environment accumulator is inspected at the
end of symbolic execution to determine the end-to-
end cost of executing the code. Note that the polyno-
mial will contain variables that represent the size of
the original input data, as well as variables that rep-
resent the cost of primitive operations. For example,
the code:

let _ = map (fun x -> x + 1) input

will produce the polynomial:

input_length * add_op

We treat the variable corresponding to input length
(input length) as free (unbound), and replace
the variable corresponding to the cost of addition
(add op) with a constant generated using regression.

Because ZQL does not generate branching code,
and the execution depth of each loop is always a func-
tion of the size of the computation’s input data, the
models produced by this symbolic execution are ac-
curate. This observation was pointed out by ZQL’s
authors, and our symbolic engine builds from an in-
complete engine they provided, with extensions to
symbolically execute all loop-based operations to ar-
bitrary nesting depth, as well as extensions to tune
the symbolic result for more accurate performance
results.

4.2 Pinocchio: Models from Circuits

Recall that Pinocchio compiles C code into a circuit,
which is evaluated by a specialized runtime to pro-
duce and verify zero-knowledge proofs. The Pinoc-
chio runtime executes roughly the same code to eval-
uate every circuit, varying only on the number of
times each operation is executed to handle every el-
ement of each input list and every operation in the
circuit. The cost of evaluating a particular circuit in
zero-knowledge can be computed by examining the
runtime evaluator’s code, and building polynomials
that characterize the number of operations that will
execute for a circuit with given characteristics. Thus,
the cost models ZØ produces for Pinocchio code are
based on static polynomials that represent the num-
ber of primitive operations needed to execute a circuit
with a given number of I/O wires and multiplication
gates.

The static Pinocchio cost polynomials for each
stage (key generation, computation, and verification)
are given in Figure 6; the models for key genera-
tion and computation are truncated for formatting
clarity, and are provided to give the reader an in-
tuitive understanding of the form each model takes.
The authors of Pinocchio generously provided asymp-
totic expressions characterizing the cost of each stage,
which we then tuned to match the Pinocchio imple-
mentation more closely1. As with the ZQL models,
most of the coefficients correspond to costs of indi-
vidual primitive operations, e.g. Add for field addi-

1This was not required for the model of Verification time,
whose asymptotic expression as provided by the authors closely
matches observed execution times

MSR-TR-2013-43 11 May 23, 2013

4 COST MODELS & OPTIMIZATIONS 4.4 Local Optimization

tion, AssignRandom for generating random wire val-
ues. The free variables correspond to circuit char-
acteristics, with NInputs representing the number of
input wires and CircuitDegree the number of multi-
plication gates. Size is the sum of these values, and
although not an independent input, is used for clar-
ity and convenience to reduce the printed size of the
models.

The only component of Pinocchio evaluation whose
execution cost might vary among circuits with iden-
tical parameters is polynomial interpolation, which
is performed in the computation stage (the details of
why this is necessary are beyond the scope of this
work, Pinocchio [36] for more information). Pinoc-
chio performs this in O(n log2 n) time, where n is the
circuit degree. Although this may account for some
divergence between predicted and actual execution
time, we have found the difference to be negligible
(see Section 4.4), and this has not prevented us from
building useful models of Pinocchio execution costs.

4.3 Modelling Proof Size

As will be explained in Section 4.5.1, the size of the
proof produced by each zero-knowledge engine is rel-
evant when deciding how to partition worker meth-
ods between tiers. We can provide symbolic expres-
sions for the proof size of ZQL computations using
the same technique described in Section 4.1: because
each symbolic value represents the size of the corre-
sponding concrete data stored in that value, we ob-
tain a polynomial expression for the proof size by
symbolically executing the prover module produced
by the ZQL compiler, and summing each polynomial
component of the output. Producing a proof size
for a Pinocchio computation is trivial: all Pinocchio
proofs have the same size (288 bytes) [36].

4.4 Local Optimization

Given a cost model produced using one of the meth-
ods described in Section 4.1, we need to instantiate
the coefficients corresponding to primitive operation
costs before we can compare the costs of selecting
each zero-knowledge engine. To derive concrete co-
efficients, we use regression to match the model to

% Difference Absolute difference (s)
Setup ProverVerif. Setup ProverVerif.

Waze 26.43 10.17 2.18 0.83 0.11 0.05
Slice 8.39 8.91 1.77 0.15 0.96 0.29
FitBit 8.81 12.70 3.84 0.10 2.41 0.73
Loyalty 12.57 12.88 0.37 0.33 0.37 0.01

Average 14.05 11.17 0.35 0.96 0.27 12.84

(a) ZQL
% Difference Absolute difference (s)

KeyGenProverVerif. KeyGenProverVerif.

Waze 10.09 36.10 1.04 0.03 0.00 0.00
Slice 9.20 19.45 0.70 0.02 0.01 0.00
FitBit 25.18 20.36 0.82 0.09 0.01 0.00
Loyalty 34.86 19.41 1.04 1.17 0.46 0.00

Average 19.83 23.83 0.90 0.33 0.12 0.00

(b) Pinocchio

Figure 8: Regression results for each application.

observed execution times.

Regression: With the exception of Pinocchio’s
computation-stage cost model, the cost models pro-
duced for both ZQL and Pinocchio are always linear
in the coefficients corresponding to primitive opera-
tions. This is because we assume, based on our do-
main knowledge of these primitive operations, that
the execution of each operation is independent of the
others. While this may oversimplify matters to a
small degree due to cache effects and compiler opti-
mizations, incorporating such effects into the models
would lead to considerably more complex terms.

Because of this, we use least-squares regression
to derive coefficients for all models except those for
Pinocchio’s compute-stage model. We use Math-
ematica’s implementation of this algorithm, which
generally produces answers quickly. To cope with the
non-linearity in Pinocchio’s compute-stage model, we
use the Gauss-Newton method [?] with at most 1,000
iterations and a randomly-chosen starting point.
Again, we use Mathematica’s implementation of this
algorithm for all of our computations.

Cost-fitting results: To derive the necessary coef-
ficients for our models, we built a regression training
application in ZØ consisting of several basic opera-
tions likely to appear in zero-knowledge applications.
The training application takes as input a list of inte-
gers, and computes an aggregate sum, scalar product,
second-degree polynomial, boolean mapping, and ta-

MSR-TR-2013-43 12 May 23, 2013

4 COST MODELS & OPTIMIZATIONS 4.5 Global Optimization

ble lookup on the list. We compiled this application
to use both all-ZQL and all-Pinocchio zero knowledge
computations, and ran it ten times for each zero-
knowledge engine using a fixed list size (n = 100).
We used the techniques described in Section 4.1 to
build performance models of this application for each
back-end, and performed linear regression to learn co-
efficients corresponding to the execution time of each
primitive operation appearing in the cost model. We
then compiled each application described in Section 6
to use either all-ZQL or all-Pinocchio zero-knowledge
computations, executed each zero-knowledge region
ten times, and recorded the deviation between exe-
cution time predicted by the regression-trained cost
models and the mean execution time observed over
all experiments for a given application.

The results of this analysis are presented in Fig-
ures 8 and 9.Figure 8 presents the prediction er-
ror of the trained cost models, both as a per-
centage of the total zero-knowledge execution time
as well as in absolute seconds. Note that the
performance models derived for ZQL are on the
whole more accurate than those for Pinocchio, rang-
ing between 1–20% error on average. The abso-
lute prediction error is quite small, topping out
at 1.17 seconds for the Pinocchio key generation
routine of the Loyalty application (this accounts
for 34.86% of the total time for the application). Fig-
ure 9 shows the coefficient of determination (R2) for
each performance model, which are all around 0.99:
the models generated by ZØ accurately reflect the
structure of the execution time of generated code.

Setup Prover Verifier

ZQL 0.97 0.99 0.99
Pinocchio 1.00 1.00 0.99

Figure 9: R2 for regression models.

Summary: To
summarize, ZØ is
able to build per-
formance models
of zero-knowledge
regions that pre-
dict actual execution time within tenths of a second in
most cases, which provides ample accuracy to make
a correct decision when selecting zero-knowledge en-
gines at compile-time.

4.5 Global Optimization

ZØ builds cost polynomials to characterize the ex-
pense of each zero-knowledge operation in the tar-
get application. However, selecting the least expen-
sive engine for each operation is oftentimes not as
straightforward as evaluating each polynomial at a
target input size and choosing the engine correspond-
ing to the lesser value — it may be the case that a
less expensive operation on the prover’s side requires
a more expensive operation on the verifier’s side, and
depending on the application computation may be
more expensive for the verifier. Alternatively, there
may be several ways to partition an application be-
tween tiers while preserving the privacy of variables
at each tier, with each partition yielding a different
trade-off between computation and communication
cost. To address these concerns, ZØ performs global
optimization on the application to balance the cost
of computation and communication among differen-
tiated tiers.

4.5.1 Solving Global Optimization

The rules for performing global optimization are
given in Figure 10. The top portion of Figure 10
specifies the inference rules needed to generate the
privacy and functionality constraints, and the bot-
tom portion the objective function used to charac-
terize the suitability of a solution to the constraints.
The rules are applied as part of a traversal of the
program’s abstract syntax tree. Each inference rule
either updates the set of constraints collected for a
program, or a context Γ; they are of the form:

Antecedent

Γ ` C,Pattern ⇒ C ′
Antecedent

Γ ` C,Pattern ⇒ Γ′

Γ is the context of the analysis, and tracks which
method the traversal is currently in, as well as
whether the traversal is in a zero-knowledge region
and which external methods have an affinity to a par-
ticular tier. C is a set of constraints. Pattern is an
AST pattern, such as v = f(v1, . . .) to match an as-
signment. Antecedent is a pre-condition for using a
rule: whenever Antecedent is true, then either the
set of constraints C is updated to a new set C ′, or

MSR-TR-2013-43 13 May 23, 2013

4 COST MODELS & OPTIMIZATIONS 4.5 Global Optimization

Γ ` C, [Private(Loc)] Type v⇒ C ← C ∪ pv = φ(Loc)

Γ ` C, Type MethodName (...){...} ⇒ Γ← Γ[CurMethod 7→ MethodName]

Γ(ZKRegion) = False

Γ ` C, v1 = v2 ⇒ C ← C ∪ pv1 = pv2

Γ ` C, ZKBegin()⇒ Γ← Γ[ZKRegion 7→ True] Γ ` C, ZKEnd()⇒ Γ← Γ[ZKRegion 7→ False]

Γ(ZKRegion) = False f is a worker method vi is defined by return value of fi

Γ ` C, v = f(v1, . . . , vn)⇒ C ← C ∪
(∧

1≤i≤n(pvi = pf ∨ pvi = φ(Any)) ∧ (pf 6= pfi =⇒ cfi,f = 1)
)

Γ(ZKRegion) = False f is an external method Γ(f.ExecutionReq) = lexec Γ(CurMethod) = f

Γ ` C, v = f(v1, . . . , vn)⇒ C ← C ∪ pv = pf ∧ pf = lexec

Γ(ZKRegion) = False

Γ ` C, v = new f(v1, . . . , vn)⇒ C ← C ∪
∧

1≤i≤n pv = pvi ∨ pvi = φ(Any)

Γ(ZKRegion) = True

Γ ` C, v = ?⇒ C ← C ∪ pv = φ(Any) ∧ zv ∈ {0, 1} ∧ qv ∈ {0, 1} ∧ zv = 1⊕ qv = 1

Γ(ZKRegion) = False

Γ ` C, v = ?⇒ C ← C ∪ ∧zv = 0 ∧ qv = 0

Γ(CurMethod) = f

Γ ` C, v is used⇒ C ← C ∪ pv = φ(Any) ∨ pf = pv

Minimize
∑

fi,fj∈Methods

cfi,fj ComCost(pfi , pfj)DataSize(fi)

+
∑

v∈Variables

zv(ZQLProver(v)TierComputeCost(v,Prover) + ZQLVerify(v)TierComputeCost(v,Verifier))

+
∑

v∈Variables

zv(PinocchioProver(v)TierComputeCost(v,Prover) + PinocchioVerify(v)TierComputeCost(v,Verifier))

Figure 10: Global optimization constraint generation and objective rules.

Γ is updated to a new context Γ′, according to the
specifics of the rule.

The rules in Figure 10 use a variable pv for each
program variable v to indicate the privacy level of v;
levels correspond to integers that are mapped to tiers
by the function φ. φ maps the tier Any (correspond-
ing to the constraint that a variable may appear on
any tier) to the value 0, and all other locations to pos-
itive integers. Similarly, a variable pf is created to
track the execution location of each worker method
f . The constraints also create a variable cf1,f2 for
each pair of worker methods f1 and f2. cf1,f2 takes
the value 0, except whenever there is a tier crossing
between f1 and f2, meaning f2 uses a value com-
puted by f1, and f1 and f2 do not reside on the
same tier, in which case it takes the value 1. Finally,
each program variable v is associated with two addi-
tional constraint variables zv and qv, corresponding
to whether the zero-knowledge proof of v is computed

by ZQL (in which case zv = 1) or Pinocchio (in which
case qv = 1). zv and qv are mutually exclusive, i.e.
zv = 1⊕ qv = 1, as the proof of each variable is com-
puted by at most one zero-knowledge engine. If v is
not defined inside of a zero-knowledge region, then
zv = qv = 0.

The rules propagate privacy concerns among the
variables in a straightforward fashion: for an assign-
ment v = f(v1, . . . , vn) or v = v1 op v2 op . . . op vn,
the constraints are updated to reflect that either
pv = pvi or pvi = φ(Any), for all vi on the right-hand
side of the assignment. Intuitively, either v has the
same privacy requirements as vi, or vi does not have
any privacy requirements at all. Similarly, whenever
a variable v is referenced in a worker method f , ei-
ther f must be placed at the tier matching the privacy
requirement of v, or v must have no privacy require-
ment.

Whenever v is assigned in a zero-knowledge region,

MSR-TR-2013-43 14 May 23, 2013

5 IMPLEMENTATION

we constrain its privacy requirement to Any, effec-
tively declassifying v. Whenever v is the target of
an assignment whose right-hand side invokes exter-
nal code, we assume that v must remain private to
the tier on which its host worker method executes.
This is a conservative over-approximation, based on
the possibility that external code can perform arbi-
trary actions outside the purview of ZØ’s analysis
capabilities, such as leaking sensitive files or memory
into return values.

The objective function in Figure 10 can be under-
stood in two parts. The first part corresponds to
the communication cost of any tier crossings in the
tier partition: for each pair of worker methods fi, fj ,
the crossing variable cfi,fj is multiplied by the cost of
sending data between the tiers ComCost(pfi , pfj) and
the size of the proofs that need to be communicated
between the functions. The proof size is computed
using cost models, as described in Section 4.1. Recall
that cfi,fj is zero except in solutions where fi and fj
are placed on different tiers.

The second part of the objective function corre-
sponds to the cost of building and verifying zero-
knowledge proofs using the engines selected by the
current solution. For each variable, there is a term
corresponding to its proof generation and verification
cost for each engine, multiplied by the cost of com-
putation at the corresponding tier. As with the tier
crossing variables cf1,f2 , zv and pv are zero except
when the solution selects ZQL or Pinocchio for the
variable v, respectively, so each term will only con-
tribute to the final cost when the solution selects a
particular zero-knowledge engine.

Performance of global optimization: We imple-
mented our global optimization algorithm as part of
the ZØ compiler. CCI2 is used to traverse the AST
of the target code, and our cost modeler from Sec-
tion 4.1 is used to generate the objective function.

To perform the constrained optimization needed to
find an optimal solution, we used the Nelder-Mead
method [37] with at most 100 iterations. We looked
for integer solutions over the full space of possible
valuations of pv, zv, qv, and cfi,fj .

We ran the global optimization algorithm pre-
sented in Section 4.5.1 on each of our applications

to determine the amount of time needed to find an
optimal solution.

The results are presented in Figure 11. Each
application resulted in between 30 and 300 con-
straints, and the constraint solver found an optimal
solution in under three seconds for all applications.

Constr. Time

FitBit 179 1.50
Waze 263 2.65
Sice 230 2.14
Loyalty 38 0.01
NIDS 48 0.18

Figure 11: Global
optimization perfor-
mance, showing solver
time in seconds for the
benchmarks in Section 6.

Because Nelder-Mead is an
approximate numerical op-
timization algorithm, it is
possible that it would return
a local minimum.

However, we checked the
solution returned for each
application, and verified
that it corresponded to
the true global minimum.
Figure 12 shows examples
of ZØ-computed global splits for two representative
applications.

5 Implementation

At the core of ZØ is a compiler that translates C#
code into an application that executes on multiple
tiers, and builds zero-knowledge proofs where needed
to provide privacy and integrity on the inputs to the
application. In order to make privacy analysis, zero-
knowledge translation, and aggressive optimization
feasible, ZØ supports a subset of C# that includes
certain LINQ (language integrated queries [38]) func-
tionality and support for external code. To ensure
that the external code does not interfere with the pri-
vacy, integrity, and optimization goals of ZØ, the con-
texts in which it is allowed are limited in some cases.
In this section, we describe the subset of C# that
is supported by ZØ, as well as the tier-splitting and
zero-knowledge translation algorithms implemented
in the compiler.

5.1 What Do We Support?

The ZØ compiler works directly on .NET assem-
blies (CIL DLLs) as input. While in principal this
means that it could work on code compiled from
any .NET language, in practice the tier-splitting and

MSR-TR-2013-43 15 May 23, 2013

5 IMPLEMENTATION 5.1 What Do We Support?
F

it
B

it
S

lic
e

T
ra

ffi
c

L
oy

al
ty

C
N

ID
S

Figure 12: Splits produced by global ZØ optimizations. Grey
cells indicate computation location, blue cells Pinocchio com-
putations, and green cells ZQL computations.

zero-knowledge conversion facilities in the compiler
are designed to work on a subset of C# with LINQ.
The syntax accepted by ZØ is summarized in Fig-
ure 13.

Program structure:The main program is struc-
tured into three parts: an initialization routine (Init-

Block, contained in a method Initialize), the main
body (MainBlock, contained in a method DoWork), and
the worker methods (MethodDef). The initialization
routine may consist of a sequence of arbitrary C#
assignment statements, including calls to methods in
external libraries not written in ZØ’s input language.
The main block consists of a sequence of method calls,
assignment statements, and sleep statements. Each
method call in the main body must be to a worker
method defined in the ZØ application.

Main program definition

Program ::= InitBlock MainBlock
MethodDef∗TypeDef∗

InitBlock ::= CSMethodSig VarDecl∗

MainBlock ::= CSMethodSig WorkerStmt+

MethodDef ::= CSMethodSig
(ExternCall | LinqStmt)+

TypeDef ::= class Id { CSFieldDef + }
CSMethodSig ::= PrivacyAnnot CSType Id(. . .){ . . . }

Statements

WorkerStmt ::= SleepStmt | CallStmt | ZKAnnot
SleepStmt ::= WorkerSleep(Integer, Integer, Integer)
CallStmt ::= (Id =)? MethodCall
ExternCall ::= return External.Id“(”Id∗“)”
LinqStmt ::= (Id =)? LinqExpr
VarDecl ::= (PrivacyAnnot | SizeAnnot)?

Id(= CSExpr)?

Expressions

Lambda ::= “(”Id∗“)” ⇒ LambdaExpr
LambdaExpr ::= MethodCall | ArithOrBoolExpr

| FieldExpr | NewObj
LinqExpr ::= LambdaLinqExpr | ZipLinqExpr
LambdaLinqExpr ::= Id.LambdaLinqId(Lambda)
LambdaLinqId ::= Select | Aggregate | First
ZipLinqExpr ::= Id.Zip(Id, NewAnonObj)
MethodCall ::= Id “(”LambdaExpr∗“)”
NewObj ::= NewAnonObj | NewStaticObj
NewAnonObj ::= new {(Id = LambdaExpr)+}
NewStaticObj ::= new MethodCall
FieldExpr ::= Id.fld〈Type〉(Int)

Annotations

ZKAnnotat ::= ZeroKnowledgeBegin()
| ZeroKnowledgeEnd()

PrivacyAnnot ::= [Private(TL)]
SizeAnnot ::= [MaximumInputSize(Int+)]

Figure 13: BNF syntax for the subset of C# supported by
ZØ. Entities prefixed with CS correspond to the corresponding
C# syntax entity.

Zero-knowledge regions: The body of each worker
method can contain calls to external methods, stan-
dard C# arithmetic and Boolean operations, and a
subset of the standard LINQ data processing opera-
tions. Regions comprised of LINQ operations can be
converted into zero-knowledge proof-generating ob-
ject code using either available zero-knowledge engine
(ZQL or Pinocchio). The supported LINQ operations
include Select, Aggregate, First, and Zip. Select provides
the ability to project the data in one list into a new

MSR-TR-2013-43 16 May 23, 2013

5 IMPLEMENTATION 5.2 Distributing Compiler

list, while performing arithmetic and Boolean oper-
ations on each item in the original source list. Ag-

gregate provides the ability to compute iterated func-
tions over a list, maintaining an order-sensitive state
through the iteration, which is eventually returned as
the result of the operation. First provides the ability
to perform searches over lists, using a programmer-
defined predicate to determine which element of the
list to match. Finally, Zip provides the ability to com-
bine multiple lists, applying arithmetic and Boolean
operations to each pair of items from the original
source lists.

Zero-knowledge regions are specified by the pro-
grammer using a pair of methods ZeroKnowledgeBegin

and ZeroKnowledgeEnd. Because zero-knowledge com-
putations provide both integrity and privacy, these
annotations serve a dual purpose. First, the pro-
grammer is denoting that the variables which are
live [1] at the end of a zero-knowledge region are
trusted across all tiers: the values have accompany-
ing proofs that any tier can examine to verify that
the computations in the zero-knowledge region are
performed correctly. Second, these regions serve to
declassify private values that are used as inputs to
a zero-knowledge region; this is in line with the ap-
proach taken by ZQL [19]. Because the inputs to
zero-knowledge regions are kept private, except in
cases where the computations are in some way invert-
ible, the output values that depend on these inputs
are considered public to all tiers.

Formal reasoning about composing proofs obtained
from different zero-knowledge back-ends remains an
interesting avenue for future work. Because this work
involves experimentation with bleeding-edge crypto-
graphic tools, there does not exist a readily-available
composition theorem that would support reasoning
about Pinocchio and ZQL.

Note that ZØ treats external methods invoked by
worker methods as opaque black boxes. To ensure
safety, we must assume that external code can cause
arbitrary side effects such as reading or writing pri-
vate data to persistent storage and communicating
over the network. The only assumption ZØ makes
is that external methods to not overwrite the active
memory of the running ZØ Application Domain, for
which we rely on the underlying .NET runtime to

enforce. For this reason, code appearing in zero-
knowledge regions cannot invoke external function-
ality. Furthermore, when propagating privacy con-
straints on variables, we assume that an external
method always returns data private to the tier on
which it is executed.

ZØ also supports size annotations on variable
declarations using the attribute [MaximumSize(. . .)].
These are used to help ZØ’s optimizer select an ap-
propriate zero-knowledge engine during compilation,
and are optional. They are discussed further in Sec-
tion 5.3.

5.2 Distributing Compiler

ZØ partitions the given target application into code
that runs on multiple tiers, inserting marshalling and
synchronization code [24, 29] as necessary to ensure
that the compiled functionality matches that speci-
fied in the original input program. The rewrite pro-
cess is implemented as a bytecode-to-bytecode trans-
formation within the CCI 2 rewriting framework for
.NET [32]. The location of code and data on each
tier can either be specified explicitly by the user, as
attribute annotations on methods, or it can be in-
ferred by the compiler to optimize computation and
communication performance while respecting privacy
constraints. In this section, we focus on the process
of compiling code to execute seamlessly on multiple
tiers, postponing the discussion relating to automatic
location inference and optimization for Section 4.5.1.
We assume that the target tier for each method is
provided as input to the compiler by the optimizer,
as described in Section 4.5.

Code partitioning between tiers takes place at
method granularity, and data partitioning is deter-
mined by the chosen code partition; data is trans-
mitted between tiers on-demand, with all of the data
represented by a variable used by a particular method
being transmitted at once as it becomes available.
Only worker methods can be split between different
tiers, so all external code referenced by the applica-
tion is present on each tier. This allows the compiler
to avoid a potentially expensive deep-dependency
analysis of the referenced external code, while keep-
ing the dependency analysis of the target application

MSR-TR-2013-43 17 May 23, 2013

5 IMPLEMENTATION 5.3 Translating LINQ to Zero-Knowledge

Σ(Method) = L Local = {argi | Σ(argi) = L} Remote = {(loc, argi) | Σ(argi) = loc ∧ loc 6= L}
L ` Σ,Method(arg1, . . . , argn)⇒ Σ, GetArgsThenCall(Method ,Remote,Local)

Σ(Method) 6= L LocalDefs = {argi | Σ(argi) = L}
L ` Σ,Method(arg1, . . . , argn)⇒ Σ, ExfiltrateData(LocalDefs) L ` Σ, WorkerSleep(·)⇒ Σ, WorkerSleep(·)

L ` Σ,Method(arg1, . . . , argn)⇒ expression Σ′ = Σ[var 7→ Σ(Method)]

L ` Σ, var = Method(arg1, . . . , argn)⇒ Σ′, var = expression

Figure 14: Transformation rules used by the ZØ compiler.

localized to the main method, DoWork.

Runtime support: The architectural principle that
guides ZØ’s tier-splitting algorithm can be summa-
rized as follows: whenever possible, delegate the data
communication and synchronization operations nec-
essary to support functionality to a runtime API.
Each application compiled by ZØ is linked to a run-
time library that provides an API for communicat-
ing data and synchronization between separate tiers.
When the compiler performs tier splitting, rather
than inlining complex code to perform the tasks,
simple calls to this API are inserted to perform the
“heavy lifting” of tier crossings at runtime. While in
general this approach limits flexibility and does not
scale to tier crossings that occur at arbitrary granu-
larity, it is a simple and clean design choice that fully
supports the limited language supported by core ZØ
applications.

The partitioning algorithm used within the main
method is rule-driven, as depicted in Figure 14. The
rules are invoked once for each tier used in the parti-
tion; this state is represented by the symbol L. Before
the rules are applied, a simple dependence analysis is
performed to determine the root tier of the data rep-
resented by each variable; the root tier corresponds
to the tier at which the data for a particular variable
is computed. Because the syntax of ZØ’s target lan-
guage does not allow dereferences or explicit loops
in the main method, this is an inexpensive def-use
dataflow analysis [1]. This information is stored in
the context Σ, which is used in each rule to insert
data exfiltration and synchronization code whenever
tier crossings occur in the code.

The first two rules in Figure 14 correspond to
method calls. In the first case, the location of the
method matches the location of the current rule ap-

plication reflected in L. In this case, the arguments to
the method are divided into two sets, Local and Re-
mote, where the dependency analysis has determined
that the data reflected by the arguments in Local is
already present on the current tier, whereas the data
reflected in Remote is not. The compiler replaces
such a method call with a call to a runtime library
function GetArgsThenCall, which uses the information
in Σ (which is made available at runtime) to com-
municate with the tiers currently hosting the data
in Remote in order to retrieve the necessary data.
GetArgsThenCall waits for all of the data to arrive,
then invokes the original method.

The second rule corresponds to the case when the
method does not reside on the same tier as the cur-
rent rule application L. In this case, any arguments
needed by the method that currently reside on the
tier reflected by L are exfiltrated to the tier on which
the method executes. This is done by a call to a run-
time library function ExfiltrateData, which estab-
lishes a listening TCP/IP socket and waits for the
tier at L to connect and request data.

The remaining rules are simpler, and correspond
to assignment and WorkerSleep statements. In the
former case (assignment), the rules are applied recur-
sively to the right-hand side of the assignment to in-
sert any exfiltration and synchronization code. When
this is complete, the assignment is inserted with the
same left-hand side, and a potentially modified right-
hand side. In the latter case (WorkerSleep), the state-
ment is emitted unchanged, as the sleep is assumed
to take place on all tiers (roughly) simultaneously.

MSR-TR-2013-43 18 May 23, 2013

5 IMPLEMENTATION 5.3 Translating LINQ to Zero-Knowledge

Pinocchio

Linq to ZQL Rewriter

List Size Solver
List Type

Generator
Expression
Rewriter

IL
Code IL Lifter

Query
Wrapper

ZQL

Figure 15: LINQ → translation process.

5.3 Translating LINQ to Zero-
Knowledge

In order to satisfy privacy and integrity constraints,
our compiler translates some statements containing
LinqExpr components in the worker methods into code
that generates zero-knowledge proofs of knowledge.
To accomplish this, ZØ relies on two zero-knowledge
back-ends: ZQL [19] and Pinocchio [36]. Each back-
end is itself a compiler, accepting as input an ex-
pression of a computation, and producing executable
code to produce a zero-knowledge proof of the com-
putation for a given set of inputs. As such, each
back-end supports its own expression language with
significantly different characteristics. The challenge
addressed in this section is the translation of the com-
mon subset of LINQ supported by ZØ into the ex-
pression languages of these back-ends.

Figure 15 gives an overview of our back-end com-
pilation process for ZQL and Pinocchio. The de-
tails differ significantly for each back-end, converg-
ing only on the first and last steps which correspond
to lifting low-level intermediate language code into
a higher representation and inserting I/O marshal-
ing instructions before and after the compiled object
code. This divergence of functionality is necessary
given the differences between the two expression lan-
guages: ZQL’s expression language is essentially a
small subset of pure standard ML, whereas Pinoc-
chio’s is a subset of C with restrictions on data types
and loop bounds. Because the subset of LINQ func-
tions supported by ZØ corresponds to a small core of
functional expressions, translating from ZØ to Pinoc-
chio is much more involved than to ZQL.

5.3.1 Pinocchio

The structure of C code is substantially different from
the types of Linq queries allowed by ZØ, and Pinoc-
chio’s additional restrictions make translation more
complicated yet. First, all list sizes used in the Pinoc-
chio expression must be statically-declared, and any
operation over a list requires a static value to bound
the corresponding loop statement. The LINQ com-
mands in ZØ do not have these restrictions, so we
must find a way to derive the needed information.
Second, many expression forms in ZØ’s LINQ com-
mands have no corresponding expression form in C:
they must be converted into statements whose side-
effects are available as sub-expressions to enclosing
expressions.

To perform translation to Pinocchio, ZØ follows a
three-step process. First, static values for the size of
each identifier that refers to a list value are derived
using a constraint solver. The basis for this computa-
tion is a set of annotations provided by the developer,
which indicate upper bounds on the sizes of certain
input lists.

List Size Resolution: As previously discussed,
Pinocchio requires static sizes for all lists and list
operations, so our translation procedure requires a
mapping from identifiers (for those that refer to list
objects) to size constants. To produce such a map-
ping, we use a constraint resolution procedure over
a set of bounding constraints generated by travers-
ing the source expression. The rules for generating
the constraints are given in Figure 16. Each rule is
of the form Γ,Syntactic Element ⇒ Γ′, where Γ and
Γ′ are sets of constraints. The constraints for each
LINQ command are straightforward. The outcome
of Select, Aggregate, and Zip operations has the same
size as the input variable(s). The outcome of a First

statement has the size of the elements contained in
the input list.

The rules are invoked by a procedure that traverses
each node of the program’s AST, and performs syn-
tactic matching on the entity represented by each
node and the Syntactic Element of each rule. As the
traversal proceeds, a list of constraints is maintained,
and updated when rules match AST nodes. When the
AST traversal completes, he set of constraints gener-

MSR-TR-2013-43 19 May 23, 2013

5 IMPLEMENTATION 5.3 Translating LINQ to Zero-Knowledge

con(expr) =

{id .elt} when expr is id .First(. . .)

{id1, id2} when expr is id1.Zip(id2, . . .)

{id} when expr is id .Aggregate(. . .)

{id} when expr is id .Select(. . .)

{id .n} when expr is id .Fld(n)

con(id) = {id}

C-FieldDef1
ϕ ≤ id = x ∧ id .elt = 1

Γ, [MaximumInputSize(x)] IEnumerable〈T〉 id ⇒ Γ ∪ {ϕ}

C-FieldDef2

ϕ =
id ≤ x ∧ id .elt ≤ n1 ∧ id .elt .elt

≤ n2 ∧ · · · ∧ id .(elt)k ≤ nk ∧ id .eltk+1 = 1

Γ, [MaximumInputSize(x, {n1, . . . , nk})] IEnumerable〈T〉 id ⇒ Γ ∪ {ϕ}

C-Method
id(id1, . . . , idn) is a call site

Γ,Type id(idf
1 , . . . , idf

n) { . . . } ⇒ Γ ∪ {idf1 ≥ id1, . . . , id
f
n ≥ idn}

C-New
Vi = con(expr i)

Γ, new id(expr1, . . . , exprn)⇒ Γ ∪
⋃

1≤i≤n{
∧

v∈Vi
id .i = v}

C-Basic
Command ∈ {Select,First}

Γ, id1.Command(id2 → · · ·)⇒ Γ ∪ {id1.elt = id2}
C-Aggregate

Γ, id1.Aggregate((id2, id3)→ · · ·)⇒ Γ ∪ {id1.elt = id3}

C-Zip
Γ, id1.Zip(id2, (id3, id4)→ · · ·)⇒ Γ ∪ {id1.elt = id3 ∧ id2.elt = id4}

C-Assign
V = con(expr)

Γ, id = expr ⇒ Γ ∪ {
∧

v∈V id = v}

Figure 16: List size constraint generation rules. Γ is a set of constraints.

ated is passed to the Z3 SMT solver for resolution.
If the constraints are satisfiable, Z3 will produce a
model, which associates constraint variables to inte-
gers that satisfy the constraints. This model is used
to derive the needed mapping between identifiers and
list sizes.

Type Generation and Function Isolation:
Pinocchio requires static sizes on all arrays and loop
bounds. To accomplish this, ZØ creates a new struct
type for each list with a distinct base type and size in
the original program. Each new type has two fields:
a static array and a constant defining the size.

Once types for each identifier are established, each
sub-expression in the source statement is converted
to a function body. To see the need for this step,
consider the statement x .Select(el → el .Select(. . .)).
C has no expression form for the functionality needed
by the Select command, so both expressions must be
converted into loop statements. Rather than placing
the loop statements in the same method body and
carefully managing side effects and sequencing with
other sub-expressions, we isolate the emitted code for
the inner Select in a separate function, and emit a call
to the new function in its place in the context of the
outer Select expression.

The statements generated for each LINQ command
are straightforward translations of their defined be-
havior into basic C; in general, the input loop is iter-
ated over, and the lambda passed to the command is
invoked over each element. Field lookups, new object
construction, and function calls are rewritten to their
C equivalents.

Pinocchio Example: Consider the example start-
ing on line 33 of Figure 1. This command traverses
the “discount” automata using a list of past pur-
chases. In order to compile this to Pinocchio, we must
first solve a set of constraints generated by a traver-
sal of its syntax, as depicted in Figure 16. These
constraints relevant to this command are given as:

1. history ≤ NPurchases

2. items.elt ≤ NItems

3. automata ≤ NEdges

4. transducer ≤ NStates

5. purch state ≤ history .elt .3

Suppose that we instantiate

NPurchases = 500

MSR-TR-2013-43 20 May 23, 2013

5 IMPLEMENTATION 5.3 Translating LINQ to Zero-Knowledge

NItems = 10, 000

NEdges = 100

NStates = 50

The solver library solves these constraints in less than
one second, and produces a model that allows us
to resolve static sizes for all of the lists we need to
perform the LINQ commands: Select, Aggregate, and
First:

{history = 500, items = 10000,

automata = 100, transducer = 50, purch state = 1}

Using these sizes, ZØ generates the necessary input
types to emit the LINQ commands. For the sake
of brevity, we show only one such type used to repre-
sent the variable automata, as they all share a similar
form:

1 struct Triple100 { Triple Enumerable [100]; }

ZØ then begins emitting new functions for each sub-
expression in the source statement. For clarity, we
will omit some function bodies by in-lining simple
sub-expressions into certain function bodies; in re-
ality, ZØ would emit a new function for every sub-
expression. We begin with the lambda expression
passed to the First command:

1 #define Boolean int
2 Boolean firstPredicate(Triple row , Int32 state ,
3 Int32 purch) {
4 return row._1 == state && row._2 == purch;
5 }

This definition is used to construct the First command
in a separate function: The definition First is used

1 Pair First(Triple100 automata , Int32 state ,
2 Int32 purch) {
3 int it;
4 for(it = 0; it < Triple100Length; i++) {
5 if(firstPredicate(
6 automata.Enumerable[it], state , purch))
7 return automata.Enumerable[it];
8 }
9 // Semantics is undefined when

10 // Find cannot find the right element
11 return automata.Enumerable [0];
12 }

to generate the function for the Aggregate command

1 Int32 Aggregate(Int32500 history ,
2 Triple100 automata) {
3 int it, int0 = 0;
4 for(it = 0; it < Pair10000Length; it++) {
5 int0 = First(automata , int0 , history.Enumerable[it]);
6 }
7 return int0;
8 }

that traverses the automata: The translation from
LINQ to C for this command is straightforward: to
aggregate a list, create an accumulator (int0 in this
case), and fold the aggregator function over each el-
ement in the accumulator in a loop that covers the
entire list. Notice that in the actual code emitted by
ZØ, this definition requires a separate function for
each new object that is constructed; here, we in-line
these functions into Aggregate to keep this discussion
relatively brief. The entire query can be invoked by
calling the resulting Pinocchio program with the rel-
evant inputs to the original program, history and
automata.

5.3.2 ZQL

Recall that we only attempt to convert LinqStmt state-
ments into zero-knowledge, so there are four primary
functions to convert, in addition to a few additional
expression forms. By no coincidence, the four pri-
mary LINQ functions correspond closely to the op-
erations supported by ZQL. Figure 17 gives a set of
rewrite rules that can be used to translate a LinqExpr

to ZQL’s expression language. Select, Aggregate, Zip,
and First calls are translated to map, fold, map2, and
find expressions. Lambda definitions and functions
calls are translated compositionally, by first trans-
lating sub-expressions and then building a new con-
struct in the target language. Object creation us-
ing new is translated into tuple construction. Recall
that user-defined types in a ZØ program must ex-
pose a single constructor that assigns all fields of the
type; field names are translated into a tuple order
using the constructor signature. Similarly, field ac-
cesses using fld are translated into a let binding that
returns the appropriate tuple component; the trans-
lation consults the target identifier’s type constructor
to deduce the number of fields in the type.

MSR-TR-2013-43 21 May 23, 2013

5 IMPLEMENTATION 5.3 Translating LINQ to Zero-Knowledge

T-Select
lambda ⇒ lambdazql

Id .Select(lambda)⇒ (map (lambdazql) Id)

T-Aggregate
lambda ⇒ lambdazql expr ⇒ exprzql

Id .Aggregate(expr , lambda)⇒ (fold (lambdazql) exprzql Id)

T-Zip
lambda ⇒ lambdazql

Id1.Zip(Id2, lambda)⇒ (map2 (lambdazql) Id1 Id2)
T-First

lambda ⇒ lambdazql

Id .First(lambda)⇒ (findt (lambdazql) Id)

T-Lambda
expr ⇒ exprzql

(Id1, Id2, . . .) → expr ⇒ fun (Id1, Id2, . . .) → exprzql

T-Call
expr i ⇒ expr i

zql

Id(expr1, . . . , exprn)⇒ Id(expr1
zql, . . . , exprn

zql)

T-Fld
typeof(Id) has k fields

Id .fld(n)⇒ (let(Id1, . . . , Idn, . . . , Idk) = Id in Idn)

T-NewNamed
expr i ⇒ expr i

zql

new Id(expr1, . . . , exprn)⇒ (expr1
zql, . . . , exprn

zql)

T-NewAnon
expr i ⇒ expr i

zql

new {Id1 = expr1, . . . , Id1 = exprn} ⇒ (expr1
zql, . . . , exprn

zql)

Figure 17: Transformation from ZØ LINQ to ZQL expressions.

Example: To illustrate the process of converting a
ZØ LINQ statement to ZQL with rewrite rules, con-
sider the example given in Figure 1. As previously
discussed, the statement beginning on line 33 tra-
verses an automata using the user’s shopping history
to arrive at a discount. Applying the rules from Fig-
ure 15, we start with T-Aggregate. The precondition
of this rule states that both the initial accumulator
and the lambda portions of our LINQ command must
have valid ZQL translations. The initial accumulator
is the constant 0, which is already valid ZQL.

Moving on to the lambda subexpression, we need
to derive a translation for the expression body, which
is another LINQ expression that performs a search
using First over a list of triples. Descending recur-
sively, we see that to translate the First command,
we need to find a valid ZQL translation for the find
predicate passed to the command. This is mostly
straightforward, but requires an application of T-Fld
to de-compose the Triple comprising each list ele-
ment into its constituent Int32 values. The only pre-
condition of this translation is that the type of Triple
has k fields for some k; this is true for k = 3. So, we

can rewrite:

trans.fld〈int〉((1))⇒ (let (1, 2, 3) = trans in 1)

We can do the same for trans.fld〈int〉(2). The field
accesses are used in a conjunctive equality test, which
is translated compositionally using T-Op. With these
rewrites, the final result for the find predicate is:

fun(trans) →
(let(1, ,) = transin(1 = state))
@&(let(, 2,) = transin(2 = purch))

Plugging this expression back into T-Aggregate, we
arrive at the following for our final rewrite:

fold
(fun(state, purch) →
find(fun(trans) →
(let(1, ,) = transin(1 = state))
@&(let(, 2,) = transin(2 = purch))

automata

This functionality is invoked on the input history;
the expression is incorporated into an outer query

function, which is called on LINQ to ZQL transla-
tions of each of the region’s inputs.

MSR-TR-2013-43 22 May 23, 2013

6 MOTIVATING CASE STUDIES 6.1 Walk for Charity with FitBit

D
e
sc

r
ip

ti
o
n

T
r
u
st
e
d

h
a
r
d
w
a
r
e

D
is
tr
ib

u
te

d
c
o
m

p
u
ta

ti
o
n

S
tr
e
a
m

in
g

c
o
m

p
u
ta

ti
o
n

M
u
lt
ip

le
Z
Q
L

st
a
g
e
s

P
a
r
a
ll
e
li
z
a
b
le

c
o
m

p
u
ta

ti
o
n

N
e
w

p
r
im

it
iv
e
s

FitBit 6.1 X 7 7 7 X 7

Slice 6.6 7 X 7 X X X
Traffic 6.4 X X X X 7 X
Loyalty 6.3 7 7 7 7 ? X
CNIDS 6.5 X 7 X 7 ? 7

Studies 6.2 X 7 X 7 X X

Figure 18: Case studies: a classification and a guide.

6 Motivating Case Studies

This section presents 6 case studies. The companion
technical report presents architectural diagrams and
a detailed description of the algorithm for each ap-
plication. Below we present a taxonomy of our appli-
cations along six dimensions that relate to practical
deployment concerns.

Trusted hardware: Does this application require
trusted hardware to establish integrity for the inputs?
The three applications that do not have this require-
ment make a different trust assumption: the source
of the data is trusted by the verifier, but not able to
violate their privacy concerns.

Distributed computation: Does this application
require some kind of peer-to-peer distributed compu-
tation? Both Slice and the Traffic Density applica-
tion require multiple provers to share intermediate
data using peer-to-peer communications.

Streaming Computation: Does this application
require the ZQL portion of the implementation to
continuously accept and process input data, provid-
ing the verifier with a continuous stream of results
and proofs?

Multiple ZQL stages: Does this application re-
quire rounds of iterated ZQL computations, inter-

leaved with intermediate processing outside of ZQL?
For example, both Slice and Traffic require an initial
round of secret share generation (in ZQL), followed
by a peer-to-peer transmission of shares (not in ZQL),
followed by a round of share aggregation (in ZQL).
This property suggests the need for a unified devel-
opment and compilation framework, that takes care
of the transitions between these stages.

Parallelizable: Is this application inherently paral-
lelizable? Two applications, Loyalty and CNIDS, are
marked as “maybe” because their primary function-
ality relies on some form of automaton evaluation.
This type of functionality may be parallelizable if an
extended form of lookup table is eventually supported
by the ZQL compiler.

New primitives: Does this application require new
primitive support from the ZQL compiler? Three
applications require either map2, fold2, or both.

Figure 18 shows a classification of our case stud-
ies along the dimensions outlined above. In each
cell, X corresponds to yes, 7 to no, and ? to maybe.
Similarly to [19], we assume that the sensor readings
devices can are trusted and untampered with, and
come signed by their producer, but the machine or
mobile phone (Client tier) that performs the distance
computation is not. Techniques for building trust
deeper into the platform are complimentary to our
work [28].

6.1 Walk for Charity with FitBit

Several programs exist for paying users for the
amount of physical exercise they perform, either di-
rectly in the form of rewards, or indirectly by mak-
ing charitable donations on their behalf, such as
earndit.com. This works by requiring users to log
their exercise habits using a FitBit or other sensor
device (e.g., a GPS-enabled tracker)to measure the
distance the user walks, runs, or bikes, and send the
logs to a centralized server.

Privacy Concern: The user may not want to reveal
their exercise route to a relatively untrusted third
party.

Integrity Concern: The service is spending money
on the basis of distance derived from sensor logs. If

MSR-TR-2013-43 23 May 23, 2013

6 MOTIVATING CASE STUDIES 6.2 Supervised Studies in Social Sciences

the distance computation can be subverted, the pos-
sibility for fraud arises, analogously to pay as you
drive insurance [5, 42, 45].

Proposed Solution: Keep all sensor readings local
to the user’s machine (laptop or mobile device), per-
form the distance computation locally, on the client,
send the result of the distance computation to the
centralized third-party server. Use ZKPK to ensure
that the distance computation is performed correctly.
This approach is similar to what has been advocated
for smart metering [39].

F(sensor data) à (exercise type, distance)
Zero-Knowledge Proof of

Knowledge

FitBit

Walk for Charity Server

User’s Home Computer

The algorithm proceeds as follows:

1. After each GPS reading, the user’s fitness device
sends an encrypted commitment to the Walk for
Charity server, as well as the user’s home com-
puter.

2. At the end of the day (or during some other
downtime), ZQL code running on the user’s com-
puter processes the GPS readings, and computes
the total distance walked by the user.

3. The results of the ZQL computation, as well as
their correspond proof, are sent to the Walk for
Charity server for validation.

6.2 Supervised Studies in Social Sci-
ences

Many scientific studies, especially in medical and so-
cial sciences, require subjects to wear sensors and un-
dergo protocols that provide information about their

physiological and psychological state. A study that
seeks to understand the effect of common workplace
events on worker’s stress levels might require a par-
ticipant to wear a galvanic skin response sensor and
a camera to detect face-to-face interactions.

Privacy Concern: Participants may have concerns
about the use of their physiological measurements
or, most prominently, the processing of images taken
from their cameras.

Integrity Concern: These studies typically involve
payment given to subjects. Subjects concerned about
their privacy, or those who simply do not want to
wear intrusive sensor devices, have an incentive to
fake the data used in the study.

Proposed Solution: Have all sensors associated
with the study report readings to the subject’s ma-
chine (desktop or mobile phone). This machine per-
forms aggregate computations relevant to the actual
study on the readings, reporting results and discard-
ing the raw sensor readings. ZKPK is used to ensure
that the readings are processed correctly. As above,
this assumes that the sensors are trusted and untam-
pered with, but that the subject’s machine is not.

Camera

GSR Monitor

Data Collection Server

Encrypted Sensor Commitments

Zero-Knowledge Proof of
Knowledge

User’s Home Computer

Sensor Readings

f(sensor data) à (face dection, GSR aggregate)

(face detection, GSR aggregate, ZKPK)

The algorithm proceeds as follows:

1. At each time interval t, the sensors attached to
the subject’s body take a reading, and send it
to the subject’s workstation, as well as sending
an encrypted commitment to the data collection
server.

2. The subject’s workstation performs aggregate
computations over the readings, and sends the

MSR-TR-2013-43 24 May 23, 2013

6 MOTIVATING CASE STUDIES 6.3 Personalized Loyalty Cards

results, along with a zero-knowledge proof of cor-
rectness, to the data collection server.

• The images are processed using a face de-
tection algorithm based on Principal Com-
ponents Analysis. A set of “eigenfaces”
and their corresponding eigenvalues are as-
sumed public input to the algorithm, and
come pre-trained from outside data. The
algorithm simply projects the image from
the camera into “face space”, and computes
its distance from the average face computed
from the training set. The distance is re-
turned from the computation.

• At the moment, the GSR readings are fed
through an identity map, as the primary
threat to privacy in this scenario is cur-
rently presumed to be the images taken
from the subject’s camera. However, this
aspect of the algorithm could be changed
to return the mean or mode of some public
number of samples.

3. The data collection server collects the proofs,
and verifies them against the encrypted commit-
ments sent by the sensors.

6.3 Personalized Loyalty Cards

Many of today’s large retailers such as Target, Best-
Buy, etc. use customer loyalty cards to encourage
repeat visits. Typically, the customer must enroll in
a loyalty program, and receive a card that can be ap-
plied to receive discounts in future visits. Recently,
certain retailers (e.g., Safeway) have begun personal-
izing this process by using the customer’s past pur-
chase history (available because of the association be-
tween checkout and loyalty card) to create discounts
available only to one particular customer. Depend-
ing on the retailer, these discounts can be sent to the
customer’s mobile phone, or applied automatically at
checkout.

Privacy Concern: Many people are not comfort-
able with a retailer tracking their purchases. This
is most readily illustrated by a recent scandal with

Target discovering that a teenage girl was pregnant
before her parents did [16].

Integrity Concern: Retailers offer discounts on the
basis of past purchase history. If a customer were
able to fake a purchase history, they might be able to
obtain a discount for an item of their choosing. More-
over, having a reproducible strategy for “generating”
discounts might create a serious problem for the re-
tailer, similar to those experienced by some retailers
that were overly generous in offering Groupons2.

Proposed Solution: The “loyalty app” on the cus-
tomer’s phone takes the place of the traditional card.
At checkout, the app uses a near-field communication
sensor with the register to receive a list of purchased
items. This information is stored locally, and never
sent to the store’s servers. Personalization algorithms
are applied to this sensor data on the phone, and the
results are discounts that can be used at the next
transaction. These discounts are transmitted to the
register at the time of purchase, and ZKPK is used
to demonstrate that the correct algorithms were ap-
plied to the NFC sensor data received in previous
transactions. This assumes that the sensor readings
are trusted, but the mobile app is not.

The algorithm proceeds as follows:

1. Before checkout time (possibly during the
phone’s downtime, or on the user’s workstation),
a ZQL query is executed to associate the user’s
previously certified transactions (see Step 2)
with a set of discounts offered by the store. This
is performed by processing the user’s transaction
history with a finite-state transducer. This as-
sumes that the user gives his transaction history
to the ZQL query in a particular order, which
is checked by the query. The choice of using
a finite-state transducer to associate discounts
with transaction histories makes this model gen-
eral with respect to the store’s system of dis-
counting. Decision trees and arbitrary sets of
rules can also be encoded using this construct.

2. At checkout time, the user waves his smartphone
at the register. The register certifies the GUID of

2http://risnews.edgl.com/retail-trends/Is-Groupon-

a-Raw-Deal-for-Retailers-73442

MSR-TR-2013-43 25 May 23, 2013

6 MOTIVATING CASE STUDIES 6.4 Crowd-sourced Traffic Statistics

each item purchased, and sends encrypted com-
mitments to the smartphone via NFC, as well as
recording them in a central database. The user’s
phone does not transmit any identifying infor-
mation to the register, so the store is unable to
associate the purchases with the user.

3. After receiving the certified transaction list for
the current purchases, the user’s smartphone
sends the result of the transducer from Step 1,
and its corresponding proof. The register can
then provide the discounts.

6.4 Crowd-sourced Traffic Statistics

Several mobile applications such as Waze (waze.com)
and Google Maps provide traffic congestion informa-
tion to end-users based on the combined GPS read-
ings of everyone using the app.

Privacy Concern: Users do not want to share their
location with the app’s servers, or the general public
(in the case of a distributed protocol).

Integrity Concern: The app needs reliable GPS
readings from users to provide its core functionality.
If users wish to “game” the system by providing fake
GPS readings while receiving the end-product, the
integrity of traffic data is compromised for everyone.

Proposed Solution: Let the users keep their GPS
readings local, and take part in a distributed proto-
col to compute local density information for trans-
mission to the app’s central server. Clients represent
their location on a map using a vector, represented
as a set of secret shares, which can be added to the
other clients’ vector shares to derive the overall traffic
density map. When each client sends their summed
shares to the server, it can reconstruct the density
map by combining the shares.

In more detail, this algorithm works as follows:

1. At regular intervals, the collection server sends a
request to each client for traffic density statistics.
Density statistics are represented by partitioning
the map into regions, and counting the number
of clients in each region.

2. On receiving a request, each client:

Traffic
Density
Statistic

ZKPK

Signed GPS
Commitments

User’s
Phone

Traffic Data
Collection Server

GPS

• Takes a GPS reading, and has it signed
using a trusted subsystem in the operat-
ing system. An encrypted commitment of
this reading is forwarded to the collection
server.

• The client computes its region, and
executes a ZQL query to: (1) check
that its computed region number is cor-
rect; (2) compute a set of linear secret
shares of its region number. Assuming R
regions, the region numbers used by the al-
gorithm are:

R0, R1, . . . , R(R− 1)

• The client sends its secret shares to all other
clients, along with the proof that each share
was computed correctly.

• On receiving the other clients’ secret shares,
the client adds them all together, and for-
wards the result, along with the proof that
the shares were added correctly, to the col-
lection server.

3. On receiving all shares, the collection server in-
terpolates to learn the sum computed by the
clients. The server than then compute the num-
ber of clients in each region by converting it into
its base-R representation.

MSR-TR-2013-43 26 May 23, 2013

6 MOTIVATING CASE STUDIES 6.6 Slice: Organizing Shopping

6.5 Collaborative Network Intrusion
Detection

Collaborative intrusion detection (CNIDS) has long
been a goal of security practitioners [30]. In the
CNIDS scenario, multiple (distrustful) organizations
share the results of their network intrusion detection
sensors, to provide their peers with advanced warning
about possible threats. A practical approach involves
sharing IP blacklists: when an IP generates a valid
NIDS alert on one organization’s network, the IP is
recorded and sent to the other participating organi-
zations.

Privacy Concern: NIDS operate on highly sensi-
tive data — raw network traces. Organizations par-
ticipating in CNIDS do not want to share their traces
with other organizations, and in many cases, may be
prohibited from doing so by law or organizational pol-
icy.

Integrity Concern: Given the privacy concern and
the benefits of participating, some organizations may
want to freeload by suppressing their own NIDS
alerts. Additionally, if an adversary manages to com-
promise a participating network, it may choose to
suppress or even generate false alerts, which may re-
sult in a denial of service for the targeted IP address.

Proposed Solution: Provide a ZKPK for the
NIDS signature-matching process, to prove that a
claimed intrusion is correct according to the signa-
ture. Note that this approach assumes that raw net-
work data coming into the NIDS has not been tam-
pered with, but that the machine performing the sig-
nature matching may not be trusted.

Internet Alert
Aggregator

Organization 1

NIDS
Traffic

Alert

No Alert

Organization 2

NIDS
Traffic

Alert

No Alert

IP Blacklist

IP Blacklist

Alert
Info

+ ZKPK

The algorithm works as follows:

1. As network events come in, the NIDS machine
certifies them, and sends encrypted commit-
ments to a separate machine; for our purposes,
call this machine the prover.

2. After a pre-defined number of network events
have transpired, or an alert has been raised, the
prover runs a ZQL query to traverse a finite state
machine representing the NIDS signature using
the certified network events. The query returns
the IP address of the network event that caused
the alert (if an alert resulted), or 0 otherwise.
The prover sends the result of the traversal (the
, as well as its ZK proof and the encrypted net-
work traffic commitments, to the alert aggrega-
tor.

6.6 Slice: Organizing Shopping

Slice (slice.com) is a service that takes as input a
user’s past purchase history from their email mailbox,
and provides various services using that data. One
such service is product recommendation — given ev-
erybody’s past purchase history, slice can build clas-
sifiers that predict a likely “next” purchase.

Privacy Concern: Handing one’s entire purchase
history to a profit-driven third party has obvious pri-
vacy implications. So does the troubling need to
share one’s email credentials with Slice at the mo-
ment.

Integrity Concern: A user, particularly one con-
cerned about privacy, might provide fake data to Slice
in order to obtain the useful classifier, which would
pollute Slice’s data for everyone and jeapordize Slice’s
ability to profit from the classifier.

Proposed Solution: Keep the user’s purchase his-
tory local, and have the users take part in a dis-
tributed protocol in order to produce the classifier
for Slice. Use ZKPK to ensure that no user is able to
subvert the distributed classifier computation. This
approach assumes that the purchase history data
used by the distributed learning algorithm is trusted.
Although it is not immediately clear how this end
might be accomplished, one solution might be to have

MSR-TR-2013-43 27 May 23, 2013

6 MOTIVATING CASE STUDIES 6.6 Slice: Organizing Shopping

the retailer certify each purchase, and send a com-
mitment along with the user’s receipt. This would
achieve a similar level of trust to the current Slice
implementation.

Receipts

Purchase
Prediction

Mechanism

slice.com

ZKPK

(1)

(2)

(2)

(3)

(4)

(4)

The approach produces a random forest classifier
from the collective purchase history of all Slice users,
with the goal of predicting whether a particular user
is likely to purchase a given item. Assuming that we
have a single, centralized database of purchase histo-
ries stored using the schema given above, a random
forest would be constructed by the following algo-
rithm (inspired by the relevant Wikipedia article):

For each tree, perform the following randomized
computation:

1. Let m be the number of input variables used to
determine the decision at each node of the tree.

2. Choose a random subset of n rows of the
database to be used for training the current tree.

3. For each node of the tree, randomly choose m
variables on which to split. Calculate the best
split based on the

4. value these variables take in the training set.

5. Grow the tree to a specified depth, and do not
prune it.

The classifier is built by combining all trees. Classi-
fication is performed by traversing each tree for the

given sample, and taking the statistical mode of the
label associated with each traversed leaf node.

Our setting is slightly different: rather than having
a centralized dataset, each row is housed on a differ-
ent user’s device. The users do not wish to share
their row with Slice, so this algorithm must be run in
a distributed fashion by sending queries to each user
corresponding to the rows selected in step 1.2 of the
algorithm given above. On receiving a query, the user
invokes ZQL functionality (given below) to compute
the correct answer based on their purchase history,
and sends the query result and its zero-knowledge
proof of correctness back to Slice. This is given in
the following algorithm:

Our setting is slightly different: rather than having
a centralized dataset, each row is housed on a differ-
ent user’s device. The users do not wish to share
their row with Slice, so this algorithm must be run in
a distributed fashion by sending queries to each user
corresponding to the rows selected in step 1.2 of the
algorithm given above. On receiving a query, the user
invokes ZQL functionality (given below) to compute
the correct answer based on their purchase history,
and sends the query result and its zero-knowledge
proof of correctness back to Slice. This is given in
the following algorithm. For each tree, perform the
following randomized computation:

1. Let m be the number of input variables used to
determine the decision at each node of the tree.

2. Choose a random subset of n users to train the
current tree. Label them u1, . . . , un.

3. For each node of the tree, randomly choose
m variables on which to split. Label them
v1, . . . , vm.

• Send a query q pertaining to each of the m
variables to u1, . . . , un. Construct q by:

q = l1 ≤ c1 ≤ u1 ∧ lm ≤ cm ≤ um ∧ . . .

where cj correspond to the amount spent
in category j, and item i is the class label
that we are trying to deduce.

• Each user constructs a set of linear secret
shares of his query result, and sends them

MSR-TR-2013-43 28 May 23, 2013

7 EXPERIMENTAL EVALUATION

to the other u1, . . . , un (excluding himself),
along with the proof that the share is con-
structed appropriately from the user’s in-
puts.

• The users add their shares independently,
and send the result (and its ZK proof) to
Slice.

• Slice interpolates on the shares returned by
the users, to obtain the number of users
that match the query q.

4. Based on the query results given by u1, . . . , un,
calculate the best split, and construct the new
node.

5. Grow the tree to a specified depth, and do not
prune it.

The classifier is built by combining all trees. Classi-
fication is performed by traversing each tree for the
given sample, and taking the statistical mode of the
label associated with each traversed leaf node.

7 Experimental Evaluation

All experiments were performed on a Win-
dows Server 2008 R2 machine with two 3.6 GHz 64-
bit cores. All reported timing measurements corre-
spond only to the zero-knowledge portion of the ap-
plication’s execution time, as this is the only portion
that our compiler attempts to optimize.

Note that we used early pre-release versions of
both ZQL and Pinocchio compilers, obtained from
the respective authors between December 2012 and
March 2013. We anticipate that both tools will im-
prove in terms of performance and perhaps proof size
and memory efficiency with the passage of time. This
can come about in part of better parallelism in ZQL
and more efficient equality comparisons in Pinocchio.

The execution time of the ZK code is generally
much higher that of the rest of the application, so fo-
cusing on these parts gives an accurate picture of the
overall execution time. Each zero-knowledge proof
generation and verification task was terminated af-
ter ten minutes. Our implementation uses 1,024-bit

Scaling

ZØ scales to all application configurations.
Others may time out on small settings: 100-
byte traces (NIDS), >100 peers (Slice).

Latency ZØ improves up to 58×, ≈ 15× on average

Proof
size

ZØ almost always less than 1 MB, at
most 1.5 MB. ZQL proofs can be tens or hun-
dreds of MBs.

Global
tradeoffs

ZØ may be slower at one tier (4× slower for
Slice server), but savings at other tiers is al-
ways much greater (16× faster for Slice clients)

Figure 20: Performance summary.

Pin. Speedup ZQL Speedup Avg. Speedup
Avg. Max Avg. Max Avg. Max

FitBit 31.7 31.7 5.2 5.26 18.5 18.5
Study 1.0 1.0 13.9 14.6 7.5 7.8
Loyalty 9.4 16.7 5.4 8.2 7.4 12.5
Waze 9.4 23.1 31.1 43.8 20.3 33.4
CNIDS 34.2 34.2 2.1 2.3 18.2 18.25
Slice 6.0 16.4 19.8 58.1 12.9 37.3

Average 15.3 12.91 –

Figure 21: Latency speedup factors for each application.

RSA keys for ZQL computations. Integers in Pinoc-
chio circuits were configured to have 32-bits for com-
parison operations, and operate over a 245-bit field.

Figure 20 summarizes the key performance re-
sults from our experiments. We found that the ZØ-
generated code gave significant performance benefits
both in terms of computation time and proof size:
up to 58× runtime speedup, with most proofs be-
low 1 MB (the largest being ≈ 1.5 MB). Further-
more, we saw that global optimization is necessary
to arrive at an ideal performance profile: some ap-
plications perform noticeably worse at one tier, but
in each case the speedup at another tier was always
greater. For example, the code ZØ generated for the
Slice server ran ≈ 4× slower than Pinocchio’s, but
the client tier experienced ≈ 16× reduced latency.

Figure 21 shows the latency speedups across all
applications. The average speedup delivered by ZØ
is 15.3× compared to Pinocchio and 12.91× com-
pared to ZQL.

In slightly more detail:

MSR-TR-2013-43 29 May 23, 2013

7 EXPERIMENTAL EVALUATION

(a) FitBit (server) (b) Slice (server) (c) NIDS (server)

(
1
)

T
h
r
o
u
g
h
p
u
t

16.19	

0.12	 0.56	 0.03	
0	

10	

20	

30	

40	

10	 100	 200	 300	 400	 500	

Cu
st
om

er
s	 /

	 m
in
ut
e	

#	 GPS	 Points	

13.54	

368.72	

59.70	

0.30	
0	

100	

200	

300	

400	

10	 100	 200	 300	 400	 500	 600	 700	 800	 900	 1000	 2500	

Q
ue

rie
s	 /

	 m
in
ut
e	

#	 Peers	

0.24	 0.12	
0	

10	

20	

30	

40	

50	

10	 200	 400	 600	 800	 1000	

Al
er
ts
	 /
	 M

in
ut
e	

Trace	 Length	 (bytes)	

672.63	

600	
500	

510.90	

(d) Loyalty (client) (e) NIDS (client) (f) Waze (client)

(
1
)

L
a
t
e
n
c
y

224.39	

375.30	
330.30	

0	

100	

200	

300	

400	

500	

600	

10	 50	 100	 200	 300	

La
te
nc
y	
(s
ec
on

ds
)	

#	 Past	 Purchases	

426.78	

287.86	

485.37	

0	

100	

200	

300	

400	

500	

600	

10	 200	 400	 600	 800	 1000	
Trace	 Length	 (bytes)	

6.37	

150.10	

133.42	

0	

50	

100	

150	

200	

10	 200	 400	 600	 800	 1000	
#	 Regions	

(g) Loyalty (h) Waze (i) NIDS

(
3
)

P
r
o
o
f

s
iz

e

0.08	 0.15	 0.30	 0.45	
3.88	

101.93	

0	

20	

40	

60	

80	

100	

120	

10	 50	 100	 200	 300	

Pr
oo

f	 S
iz
e	
(M

B)
	

#	 Past	 Purchases	

Pinocchio	 proof	 size	 =	 0.0008	 MB	

0.005	

8.18	

20.43	

0	

5	

10	

15	

20	

25	

10	 100	 200	 300	 400	 500	 600	 700	 800	 900	 1000	 2500	
#	 Peers	

Pinocchio	 proof	 size	 =	 0.002	 MB	

1.50	

3.13	

0	
0.5	
1	

1.5	
2	

2.5	
3	

3.5	

10	 200	 400	 600	 800	 1000	
Trace	 Length	 (bytes)	

Pinocchio	 proof	 size	 =	 0.001	 MB	

Figure 19: (1) Throughput, (2) latency, and (3) proof size for a characteristic sample of application functionality.

• The ZØ solution is the only one that scales to all
settings used in our experiments. Often, ZQL or
Pinocchio are only able to complete the smallest
configuration before timing out.

• The ZØ solution also gives significant savings on
latency: as much as 44× on some applications,
and commonly around 5×–10×.

• Our experiments highlight the need for our
global optimization algorithm (Section 4.5):
in several experiments, the ZØ at one tier
performed more slowly than an alternative
(about 4× less throughput in the case of Slice’s
server code), but in each case, the savings
provided at a different tier was much greater
(about 16× less latency for Slice’s client code).

• The ZØ solution nearly always produces small
zero-knowledge proofs, typically less than one
megabyte, and at most 1.5 megabytes in our

experiments. Contrasted with the size of ZQL
proofs, which can be tens or hundreds of
megabytes in many cases, this amounts to a sig-
nificant savings.

Results: Space limitations do not allow us to present
our measurements exhaustively. Instead, Figure 19
shows a sample of the runtime characteristics for our
target applications. Rather than giving raw execu-
tion times, the results are broken into three cate-
gories: throughput, latency, and proof size. These
metrics were selected to more clearly depict the im-
pact of zero-knowledge techniques on each applica-
tion.

Throughput: Figure 19(a)–(c) shows the results
of three experiments involving throughput. Fig-
ure 19(a) shows the server’s throughput for the FitBit
application, which corresponds to the number of cus-
tomers per minute the server can handle as the size of
each customer’s workout (n) increases. First, notice

MSR-TR-2013-43 30 May 23, 2013

7 EXPERIMENTAL EVALUATION

that the only point at which the Pinocchio solution
is present is n = 10, where it far outperforms the
other two solutions. This is because verification in
Pinocchio is very fast, whereas the time to construct
a proof can be quite slow: in this case, for any n > 10,
the proof construction phase timed out after ten min-
utes. Similarly, for n > 200, the ZQL solution times
out. With the exception of n = 10, the ZØ solution
dominates the others, offering 35× improvement at
n = 100 and 14× at n = 200, while remaining the
only viable option for higher values of n.

Figure 19(b) shows the number of random forest
construction queries per minute the Slice server is
able to handle, as the number of participating peers
increases. This result is particularly interesting, as
it motivates the need to perform global optimiza-
tion over both the client and servers’ computations
to achieve reasonable performance. In this figure, the
Pinocchio solution dominates the ZØ solution at all
data points. This seems like a negative result, until
one considers the amount of time needed at the client
to answer a query, where the Pinocchio solution is up
to 16× slower than the ZØ solution. This validates
the compiler’s choice of back-ends, as the penalty on
the client is much greater than that on the server.

Figure 19(c) shows the number of intrusion alerts
per minute the collaborative NIDS server can han-
dle as the number of bytes in the intrusion trace in-
creases. Again, as with Figure 19(a), Pinocchio out-
performs at a single extremal small data point, but
fails to scale to any larger points. For the remain-
ing points, the ZØ solution outperforms the others
by about 4×, and is the only solution that is able
to scale to even the modest intrusion trace length
of 1 KB.

Latency: Figure 19(d)–(f) shows the results of three
experiments involving latency. Latency is always
measured in seconds, and has a uniform upper bound
of 600 seconds, which corresponds to our experimen-
tal timeout. Figure 19(d) shows the latency of the
client side of the Loyalty application as the number
of purchases used to personalize discounts (n) in-
creases. The ZØ solution far outpaces both alterna-
tives at all data points (5×–17× improvement), and
is the only solution that scales past n = 100. For

longer purchase histories, the ZØ solution completes
in around 2.5 minutes, which is ample time if the ap-
plication is location-aware and begins proving a set
of discounts when the user enters the store.

Figure 19(e) shows the NIDS client’s latency to
demonstrate that a single intrusion is present in a
trace. Again, the ZØ solution is the only one to scale
to a modest trace length of 1K, while the Pinocchio
times out at all points beyond ten bytes. Otherwise,
we see that as long as intrusions are spaced more than
seven minutes (426 seconds) apart, the NIDS client
has enough time to build proofs for each intrusion
trace.

Figure 19(f) shows the latency of the Waze client
to send traffic statistics for a single location query as
the size of the map (n) increases. First notice that
the ZØ solution is essentially constant, not varying by
more than 3.5 seconds between any two data points;
this is the only feasible solution, as both alternatives
may require up to two minutes to finish computa-
tion, which will limit the quality (i.e., recency) of the
statistics the server is able to gather over time. Sec-
ond, notice that at about n = 800, ZQL becomes
more performant than Pinocchio. This is because as
the map increases, the size of the lookup table needed
to encode the regions increases. Pinocchio is not able
to perform lookups as quickly as ZQL, so the portion
of the computation needed for lookups becomes more
significant at higher values of n. ZQL performs worse
at lower values because most of the computation cor-
responds to the multiplications needed to compute
secret shares, which it does not complete as quickly
as Pinocchio.

Proof Size: Figure 19(g)–(i) shows the results of
experiments involving the size of the zero-knowledge
proof in various applications. We always measure in
megabytes, and do not display a curve for the Pinoc-
chio solutions, as it is constant across input size and
is usually too small to distinguish on the same scale
as the ZQL and ZØ solutions. Figure 19(g) shows
the proof size for the Loyalty application as the num-
ber of past purchases (n) varies. While the Pinoc-
chio solution of course dominates the others by this
metric (864 bytes), as we know from previous ex-
periments (Figure 19(d)) it does not scale in terms

MSR-TR-2013-43 31 May 23, 2013

8 RELATED WORK

of Latency. The ZØ proof size remains nearly con-
stant, always under 500 KB, whereas the ZQL so-
lution requires at least three megabytes (to perform
the inequality checks at the beginning), and finishes
at about 100 megabytes. Note that we obtained the
point at n = 300 despite the timeout, by letting the
prover run for longer in this single instance. Because
the Loyalty application needs to communicate this
proof wirelessly to a POS terminal, size is crucial,
and the ZØ solution offers the best overall character-
istics in terms of size and latency.

Figure 19(h) shows the proof size for the Waze
application as the number of peers varies. Again,
Pinocchio dominates (2 KB), but the tradeoff in la-
tency for this proof size is quite high (Figure 19(f)).
The ZØ proof size remains constant at around 5 KB
because the only processing done by ZQL is table
lookups, which have a constant proof size. The
ZQL solution requires 20 megabytes for 2,500 clients,
and 8 megabytes for 1,000 clients, making it unten-
able given that the clients need to transmit proofs
frequently over cellular networks.

Figure 19(i) shows the proof size for the NIDS ap-
plication as the intrusion trace length increases. The
Pinocchio proof is about 1 KB, but again the tradeoff
in latency makes this characteristic mostly irrelevant.
The sizes for the ZØ and ZQL solutions are both lin-
ear, with the ZØ solution offering a savings of about
4× at all data points. This is a significant savings,
considering that false positives may be frequent, so
the client may need to send proofs to the server al-
most continuously throughout service.

8 Related Work

Tier-Splitting and Language Methods: A num-
ber of compilers exist that enable automated tier-
splitting in some form. In the context of web pro-
gramming, Volta [29], Links [13], and Hilda [47] were
among the pioneering efforts. More recently, the
Google Web Toolkit [24] has gained popularity as
a monolithic, tier-splitting framework for web ap-
plication development. It shares a few similarities
with Volta, in that developers supply their applica-
tion as a single piece of code in a high-level language,

such as Java or C#. They specify which tier each
method will execute on, either the client or server,
and the compiler generates byte code for the server
and JavaScript for the client, inserting data transfer
and synchronization code automatically. ZØ draws
inspiration from this work in its tier-splitting func-
tionality: mechanically, there is little difference in
how ZØ handles tier splitting from these tools. The
difference is in how ZØ “drives” tier-splitting: cost
models including execution time and data transfer
size are used to derive an optimization problem whose
solution represents an ideal division of functionality
between tiers.

Others have used tier splitting with a focus on se-
curity and privacy guarantees. SWIFT [12] builds
on the JIF [33] language, which incorporates security
types into a Java-like language to provide confiden-
tiality and integrity guarantees. In their setting, in-
tegrity takes a slightly different meaning than in ours:
it is an information flow property that ensures trusted
data is not affected by untrusted sources. SWIFT
builds on JIF by supporting tier-splitting for web ap-
plications, providing the guarantee that data that is
private to the server (or client) is not sent to the client
(or server). To accomplish this, information flow con-
straints are embodied into an integer programming
problem whose solution corresponds to a valid (e.g.,
secure) placement of code and data onto tiers that
minimizes the number of messages communicated be-
tween the two. ZØ supersedes the optimization as-
pect of this work by incorporating computation time
and data size into the tier placement algorithm.

Backes et al. [3] presented a compiler for dis-
tributed authorization policies written in Evidential
DKAL [7] (a variant of the Distributed Knowledge
Authorization Logic that supports signature-based
proofs). The authorization policies may be privacy-
aware, so that principals can prove their right to ac-
cess a resource based on sensitive information, with-
out directly revealing the content of that information.
Like ZØ, zero-knowledge proofs are used to support
this functionality. ZØ differs from this work in its
application focus: whereas ZØ allows developers to
specify functionality in a subset of C# and integrate
with existing .NET code, the work of Backes et al.
translates declarative statements in a high-level dis-

MSR-TR-2013-43 32 May 23, 2013

9 CONCLUSIONS

tributed authorization logic into executable crypto-
graphic code with zero-knowledge properties.

A notion of integrity similar to that used in ZØ has
been addressed in tier splitting by Ripley [44]. Ripley
prevents client-side cheating in web applications by
replicating on the server the code that should execute
on the client, and checking that the outputs produced
by the client match those that are expected by the
replicated computation. Unlike ZØ, this mechanism
does not preserve privacy.

Protection against untrusted clients has also re-
ceived much attention in the context of online gam-
ing [25, 46]. In a distributed online game, part of
the application workload is typically delegated to the
clients and the server keeps track of only an abstract
state of the game environment. Jha et al. propose
a solution to the distributed online game integrity
problem by performing random audits of the client
state verifying that the client has not manipulated
its state in violation of the semantic rules of the
game [26]. Our approach, in contrast, provides a
non-probabilistic guarantee of integrity at a poten-
tially higher cost, and also preserves privacy.

Zero-Knowledge Proofs: Zero-Knowledge proofs
of knowledge [6] have seen extensive use in the privacy
and applied cryptography literature. Zero-knowledge
protocols have been developed for proving linear re-
lations [8], equality and inequality [40], logical con-
nectives [8], multiplication [9], division and modulo
[10], and set membership [9]. More recently, Gennaro
et al. have explored the use of quadratic span pro-
grams for providing zero-knowledge proofs of knowl-
edge [22]. Their approach allows very efficient proofs
for certain types of computation, including matrix
operations and hash computations; additionally, the
proof size remains constant regardless of the nature
of the computation, or the size of the inputs. Taken
together, all of this work on zero-knowledge proofs
of knowledge allows one to provide a zero-knowledge
proof that expresses the functionality of an arbitrary
circuit, as in the case of fully-homomorphic encryp-
tion [23].

As a result of this work, several projects have
sought to provide general-purpose zero-knowledge
compilers [2, 3, 19, 31, 36] that take as input a

proof goal, and produce executable (oftentimes dis-
tributed) code for a zero-knowledge proof of that
goal. The first set of zero-knowledge proof compil-
ers [2, 3, 31] took as input specifications of crypto-
graphic protocols, such as in the Camenisch-Stadler
notation [11]. While this allows those responsible
for building the zero-knowledge proof-based compu-
tations with more control over the specific parame-
ters used in the scheme, it is less suitable for develop-
ers without extensive expertise in cryptography be-
cause computations cannot be expressed in the famil-
iar terms of a high-level programming language. The
second group of zero-knowledge compilers [19, 36]
are specifically geared towards generating proofs for
general-purpose computations, and allow developers
to specify their zero-knowledge computations in a
language similar to F# (ZQL, [19]) or a subset of
C (Pinocchio, [36]). Our work makes extensive use
of this generation of zero-knowledge compilers, as we
attempt to match specific computations to the back-
end most appropriate for handling tme.

There are a number of larger projects that in-
corporate zero-knowledge proofs in order to man-
age integrity without sacrificing privacy. Recently,
Rial and Danezis proposed a system for privacy-
preserving smart metering [39] in which the client
uses a zero-knowledge proof of knowledge to demon-
strate a correct billing total without releasing the
readings made by the meter. Danezis et al. described
zero-knowledge random forest and hidden Markov
model classification protocols [14]. This work is par-
ticularly relevant for our third-party classifier model,
as it provides algorithms for performing a variety of
types of classification in zero-knowledge. Balasch et
al. proposed a privacy-preserving automotive toll
pricing protocol [4], based on zero-knowledge proofs
of knowledge similar to those described here.

9 Conclusions

This paper paves a way for using zero-knowledge
techniques for day-to-day programming. We have
described the design and implementation of ZØ, a
distributing zero-knowledge compiler which produces
distributed applications that rely on ZKPK to pro-

MSR-TR-2013-43 33 May 23, 2013

REFERENCES REFERENCES

vide simultaneous guarantees for privacy and in-
tegrity. We build on recent developments in zero-
knowledge cryptographic techniques, exposing to the
developer the ability to take advantage of these ad-
vances without requiring domain-specific knowledge
or learning a new specialized language. Most of the
heavy lifting is done by the compiler, including cost
modeling to decide which zero-knowledge back-end
to use and how to split the application for optimal
performance, together with the actual code splitting.

Our cost-fitting models provide an excellent match
with the observed performance, with R2 scores be-
tween .97 and .99. Our global application optimizer
is fast, completing in under 3 seconds on all pro-
grams. Our manual and experimental examination of
program splits and back-end choices proposed by ZØ
confirms that they are indeed optimal. Using 6 ap-
plications based on real-life commercial products, we
show how ZØ makes it viable to use zero-knowledge
technology. We observe performance improvements
of over 58×. Perhaps most importantly, ZØ allowed
many of the applications to scale to large data sizes
with thousands of users while remaining practical in
terms of computation time and data size. This means
that applications which were not feasible using state-
of-the-art zero-knowledge tools are now practical in
realistic settings.

References

[1] A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 2007.

[2] J. B. Almeida, E. Bangerter, M. Barbosa,
S. Krenn, A.-R. Sadeghi, and T. Schneider. A
certifying compiler for zero-knowledge proofs of
knowledge based on σ-protocols. In Proceed-
ings of the European Conference on Research in
Computer Security, 2010.

[3] M. Backes, M. Maffei, and K. Pecina. Au-
tomated synthesis of privacy-preserving dis-
tributed applications. In Proceedings of the Net-
work and Distributed System Security Sympo-
sium, 2012.

[4] J. Balasch, A. Rial, C. Troncoso, B. Preneel,
I. Verbauwhede, and C. Geuens. Pretp: privacy-
preserving electronic toll pricing. In Proceedings
of the Usenix Security Conference, 2010.

[5] J. Balasch, A. Rial, C. Troncoso, B. Preneel,
I. Verbauwhede, and C. Geuens. Pretp: Privacy-
preserving electronic toll pricing. In Proceedings
of the Usenix Security Symposium, 2010.

[6] M. Bellare and O. Goldreich. On defining proofs
of knowledge. In Proceedings of the International
Cryptology Conference on Advances in Cryptol-
ogy, 1993.

[7] A. Blass, Y. Gurevich, M. Moskal, and I. Nee-
man. Evidential authorization*. In S. Nanz, ed-
itor, The Future of Software Engineering. 2011.

[8] S. Brands. Rapid demonstration of linear re-
lations connected by boolean operators. In
Proceedings of the International Conference on
Theory and Application of Cryptographic Tech-
niques, 1997.

[9] J. Camenisch, R. Chaabouni, and A. Shelat. Ef-
ficient protocols for set membership and range
proofs. In Proceedings of the International Con-
ference on the Theory and Application of Cryp-
tology and Information Security: Advances in
Cryptology, 2008.

[10] J. Camenisch and M. Michels. Proving in zero-
knowledge that a number is the product of two
safe primes. In Proceedings of the 17th interna-
tional conference on Theory and application of
cryptographic techniques, 1999.

[11] J. Camenisch and M. Stadler. Efficient group
signature schemes for large groups. In Proceed-
ings of the International Cryptology Conference
on Advances in Cryptology, 1997.

[12] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram,
L. Zheng, and X. Zheng. Secure Web applica-
tions via automatic partitioning. SIGOPS Op-
erating Systems Review, 41(6), 2007.

MSR-TR-2013-43 34 May 23, 2013

REFERENCES REFERENCES

[13] E. Cooper, S. Lindley, P. Wadler, and J. Yal-
lop. Links: Web programming without tiers.
In Formal Methods for Components and Objects.
Springer Berlin / Heidelberg, 2007.

[14] G. Danezis, M. Kohlweiss, B. Livshits, and
A. Rial. Private client-side profiling with random
forests and hidden Markov models. In Proceed-
ings of the International Conference on Privacy
Enhancing Technologies, 2012.

[15] D. Davidson, M. Fredrikson, and B. Livshits.
MoRePriv: Mobile OS Support for Applica-
tion Personalization and Privacy (Tech Report).
Technical Report MSR-TR-2012-50, Microsoft
Research, May 2012.

[16] C. Duhigg. How companies learn your secrets.
http://nyti.ms/SZryP4, Feb. 2012.

[17] C. Dwork. Differential privacy: a survey of re-
sults. In Proceedings of the International Con-
ference on Theory and Applications of Models of
Computation, May 2008.

[18] T. Fechner and C. Kray. Attacking location pri-
vacy: exploring human strategies. In Proceed-
ings of the Conference on Ubiquitous Comput-
ing, 2012.

[19] C. Fournet, M. Kohlweiss, and G. Danezis. Zql:
A compiler for privacy-preserving data process-
ing. In Usenix Security Symposium, 2013.

[20] M. Fredrikson and B. Livshits. RePriv: Re-
envisioning in-browser privacy. In IEEE Sym-
posium on Security and Privacy, May 2011.

[21] F. D. Garcia, E. R. Verheul, and B. Jacobs. Cell-
based roadpricing. In Proceedings of the Euro-
pean Conference on Public Key Infrastructures,
Services, and Applications, 2012.

[22] R. Gennaro, C. Gentry, B. Parno, and
M. Raykova. Quadratic span programs and suc-
cinct nizks without pcps. In Proceedings of the
IACR Eurocrypt Conference, 2013.

[23] C. Gentry. Fully homomorphic encryption using
ideal lattices. In Proceedings of the ACM Sym-
posium on Theory of computing, 2009.

[24] Google Web Toolkit. http://code.google.

com/webtoolkit.

[25] G. Hoglund and G. McGraw. Exploiting On-
line Games: Cheating Massively Distributed Sys-
tems. Addison-Wesley Professional, 2007.

[26] S. Jha, S. Katzenbeisser, and H. Veith. En-
forcing semantic integrity on untrusted clients
in networked virtual environments. In Proceed-
ings of the IEEE Symposium on Security and
Privacy, 2007.

[27] F. Kerschbaum. Privacy-preserving com-
putation (position paper). http://www.

fkerschbaum.org/apf12.pdf, 2012.

[28] H. Liu, S. Saroiu, A. Wolman, and H. Raj. Soft-
ware abstractions for trusted sensors. In Proceed-
ings of the International Conference on Mobile
systems, Applications, and Services, 2012.

[29] D. Manolescu, B. Beckman, and B. Livshits.
Volta: Developing distributed applications by
recompiling. IEEE Softtware, 25(5):53–59, 2008.

[30] M. Marchetti, M. Messori, and M. Colajanni.
Peer-to-peer architecture for collaborative intru-
sion and malware detection on a large scale. In
Proceedings of the International Conference on
Information Security, 2009.

[31] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hin-
kle, and A. Lysyanskaya. Zkpdl: a language-
based system for efficient zero-knowledge proofs
and electronic cash. In Proceedings of the Usenix
Conference on Security, 2010.

[32] Microsoft Research. Common compiler infras-
tructure. http://ccimetadata.codeplex.com,
2012.

[33] A. C. Myers and B. Liskov. A decentralized
model for information flow control. In SOSP,
1997.

MSR-TR-2013-43 35 May 23, 2013

REFERENCES REFERENCES

[34] A. Narayanan and V. Shmatikov. Robust de-
anonymization of large sparse datasets. In Pro-
ceedings of the IEEE Symposium on Security and
Privacy, 2008.

[35] A. Narayanan and V. Shmatikov. De-
anonymizing social networks. In Proceedings of
the IEEE Symposium on Security and Privacy,
2009.

[36] B. Parno, C. Gentry, J. Howell, and M. Raykova.
Pinocchio: Nearly practical verifiable computa-
tion. In Proceedings of the IEEE Symposium on
Security and Privacy, 2013.

[37] W. H. Press, S. A. Teukolsky, W. T. Vetterling,
and B. P. Flannery. Numerical Recipes, 3rd edi-
tion: The Art of Scientific Computing. Cam-
bridge University Press, 2007.

[38] J. Rattz and A. Freeman. Pro LINQ: Language
Integrated Query in C# 2010. Apress, 2010.

[39] A. Rial and G. Danezis. Privacy-preserving
smart metering. In Proceedings of the Workshop
on Privacy in the Electronic Society, 2011.

[40] C.-P. Schnorr. Efficient signature generation by
smart cards. Journal of Cryptology, 4:161–174,
1991.

[41] V. Toubiana, A. Narayanan, D. Boneh, H. Nis-
senbaum, and S. Barocas. Adnostic: Privacy
preserving targeted advertising. In Proceedings
of the Network and Distributed System Security
Symposium, Feb. 2010.

[42] C. Troncoso, G. Danezis, E. Kosta, and B. Pre-
neel. PriPAYD: privacy friendly pay-as-you-
drive insurance. In P. Ning and T. Yu, edi-
tors, Proceedings of the 2007 ACM Workshop on
Privacy in the Electronic Society, WPES 2007,
pages 99–107. ACM, 2007.

[43] C. Troncoso, G. Danezis, E. Kosta, and B. Pre-
neel. PriPAYD: privacy friendly pay-as-you-
drive insurance. In Proceedings of the ACM
Workshop on Privacy in electronic society,
WPES ’07, 2007.

[44] K. Vikram, A. Prateek, and B. Livshits. Ripley:
Automatically securing distributed Web appli-
cations through replicated execution. In Con-
ference on Computer and Communications Se-
curity, Oct. 2009.

[45] Wikipedia. Usage-based insurance.
http://en.wikipedia.org/wiki/Usage-

based_insurance, 2013.

[46] J. Yan. Security design in online games. In Pro-
ceedings of the Annual Computer Security Ap-
plications Conference, 1993.

[47] F. Yang, J. Shanmugasundaram, M. Riedewald,
and J. Gehrke. Hilda: A high-level language for
data-driven Web applications. In Proceedings of
the International Conference on Data Engineer-
ing, 2006.

MSR-TR-2013-43 36 May 23, 2013

